Short Communication: Two Properties of Diagonally Dominant Matrices

Xue-Rong Yong

Department of Mathematics, Xin Jiang University, Urumqi 830 046, P.R. China

A property of strictly diagonally dominant matrices and a generalization of a Varga's bound for $\|A^{-1}\|_{\infty}$ to the case $\|A^{-1}B\|_{\infty}$ are given and the two-sided bounds for the determinants of strictly diagonally dominant matrices are derived.

KEY WORDS diagonally dominant matrix; determinant; norm

1. Introduction and notation

Let $A = (a_{ij})$ be an arbitrary $n \times n$ complex matrix. If

$$|a_{ii}| > \sum_{j \neq i} |a_{ij}|, i = 1, 2, \dots, n$$

then A is called a row strictly diagonally dominant matrix (the column is defined similarly). Such matrices occur frequently in mathematics and engineering. It is well known that they are important when studying M-matrices [1]. Recently, some numerical properties of these matrices have been obtained [2, 3] and applications of them are emerging [4, 5].

Throughout this short communication we denote the jth entry of the vector x by $(x)_j$; superscripts T and H denote the transpose and conjugate transpose, respectively. For a vector $x = (x_1, x_2, \ldots, x_n)$ and a matrix A, $||x||_{\infty}$, and $||A||_{\infty}$ means $||x||_{\infty} = \max |x_i|$, and $||A||_{\infty} = \sup_{||x||_{\infty}=1} ||Ax||_{\infty}$, respectively.

2. Main results

Lemma 2.1. Let $a^T = (a_1, a_2, ..., a_n) \neq 0$ be a real vector. If, for an arbitrary vector $x^T = (x_1, x_2, ..., x_n) \neq 0$, $a^T x = 0$

implies that $|x_i| < ||x||_{\infty}$ (i is fixed), then

$$|a_i| > \sum_{j \neq i} |a_j|$$

and vice versa.

Proof Without loss of generality we suppose that $a_j > 0 (j = 1, 2, ..., n)$. We need only show the result for i = 1 and use induction on n (the dimension of vector a). For n = 2, it yields

$$a_1x_1 = -a_2x_2$$

This gives rise to $a_1 > a_2$, provided that

$$|x_1| < |x_2| = ||x||_{\infty}$$

Now, assuming that this is true for n = k - 1, we are able to verify this for n = k. Since the vector $x \neq 0$ is arbitrary, it is easy to see that

$$a_1 > a_j, \qquad j = 2, 3, \ldots, k$$

Let $||x||_{\infty} = |x_k| > |x_1|$, then since

$$a_1x_1 + a_2x_2 + \ldots + a_kx_k = 0$$

we have

$$(a_1 - a_2)x_1 + a_2y + a_3x_3 + \ldots + a_kx_k = 0$$

with $y = x_1 + x_2$. Hence,

$$(a_1 - a_2)x_1 + a_3t + a_4x_4 + \dots, a_kx_k = 0$$

with

$$t = \frac{a_2(x_1 + x_2)}{a_3} + x_3$$

this leads to $b^Tz=0$, where $b=(a_1-a_2,a_3,\ldots,a_k)^T$, and $z=(x_1,t,x_4,\ldots,x_k)^T$. This is the case where n=k-1. Therefore, by $|x_1|<\|x\|_\infty=\|z\|_\infty$ and the assumption of induction, we have

$$a_1 - a_2 > a_3 + \ldots + a_k$$

That is

$$a_i > \sum_{j=2} a_j$$

which, of necessity, completes the proof.

Conversely, since $a^T x = 0$, we have

$$a_1 x_1 = -\sum_{j=2}^n a_j x_j$$

Hence, taking into account that $a_i > 0$, j = 1, 2, ..., n, this yields

$$a_1|x_1| \le \sum_{j=2}^n a_j |x_j|$$

$$\le \left(\sum_{j=2}^n a_j\right) \|x\|_{\infty}$$

Noticing that $a_1 > \sum_{j=2}^n a_j$, the previous inequality implies that

$$|x_i| < ||x||_{\infty}$$

Theorem 2.1. An $n \times n$ matrix A is row strictly diagonally dominant if and only if for any $x^T = (x_1, x_2, \dots, x_n) \neq 0$ the equality $(Ax)_j = 0$ implies

$$|x_j| < \|x\|_{\infty}$$

Proof Apply Lemma 2.1.

Lemma 2.2. Let $B = (b_{ij})$ be an $n \times m$ matrix and $A = (a_{ij})$ be an $n \times n$ row strictly diagonally dominant matrix. Then

$$||A^{-1}B||_{\infty} \le \max_{i} \frac{\sum_{j=1}^{m} |b_{ij}|}{|a_{ii}| - \sum_{j \ne i} |a_{ij}|}$$

Proof Since there exists an *m*-dimensional vector $x = (x_1, x_2, \dots, x_m)^T (\|x\|_{\infty} = 1)$ such that

$$||A^{-1}B||_{\infty} = ||A^{-1}Bx||_{\infty} = ||y||_{\infty} = |y_{i_0}|$$

where $A^{-1}Bx = y$ and $y = (y_1, y_2, ..., y_n)^T$, we have

$$\sum_{j=1}^{m} b_{i_0 j} x_j = a_{i_0 i_0} y_{i_0} + \sum_{j \neq i_0} a_{i_0 j} y_j$$

Hence,

$$\sum_{j=1}^{m} |b_{i_0 j}| \max_{1 \le j \le m} |x_j| \ge \left(|a_{i_0 i_0}| - \sum_{j \ne i_0} |a_{i_0 j}| \right) |y_{i_0}|$$

implying

$$|y_{i_0}| \le \frac{\sum_{j=1}^m |b_{i_0j}|}{|a_{i_0i_0}|^r - \sum |a_{i_0j}|} \max_{1 \le j \le n} |x_j|$$

Taking into account that $|y_{i_0}| = \|A^{-1}B\|_{\infty}$, and $\|x\|_{\infty} = \max_{1 \le j \le n} |x_j| = 1$, this completes the proof.

In the case B = I, the result of Lemma 2.2 reduces to

$$||A^{-1}||_{\infty} \le \max_{1 \le i \le n} \frac{1}{|a_{ii}| - \sum_{j \ne i} |a_{ij}|}$$

which is the R.S. Varga's bound [6].

Theorem 2.2. Let $A = (a_{ij})$ be an $n \times n$ row strictly diagonally dominant matrix. Then for the determinant of A the following two-sided bounds hold;

$$\prod_{i=1}^{n} \left(|a_{ii}| - r_i \sum_{j \neq i+1}^{n} |a_{ij}| \right) \le |\det A|$$

$$\le \prod_{i=1}^{n} \left(|a_{ii}| + r_i \sum_{j \neq i+1}^{n} |a_{ij}| \right)$$

where

$$\begin{cases} r_i = \max_{i+1 \le k \le n} \frac{|a_{ki}|}{|a_{kk}| - \sum_{j=i+1}^n |a_{kj}|} \le 1, & (i = 1, 2, \dots, n-1) \\ r_n = 0 & \end{cases}$$

Proof Let

$$A = \left(\begin{array}{cc} a_{11} & b^H \\ c & A_1 \end{array}\right)$$

where $b^H = (a_{12}, a_{13}, \dots, a_{1n}), c = (a_{21}, a_{31}, \dots, a_{n1})^H$. Then

$$\det A = (a_{11} - b^H A_1^{-1} c) \det A_1$$

Since A_1 is also a row strictly diagonally dominant matrix, by Lemma 2.2 we have

$$|b^{H}A_{1}^{-1}c| \leq ||b||_{1} ||A_{1}^{-1}c||_{\infty}$$

$$\leq \sum_{j=2}^{n} |a_{kj}| \max_{2 \leq k \leq n} \frac{a_{k1}}{|a_{kk}| - \sum_{j=2, j \neq k}^{n} |a_{kj}|}$$

$$= \sum_{j=2}^{n} |a_{kj}| \cdot r_{1}$$

Hence, by

$$(|a_{11}| - |b^H A_1^{-1} c|) | \det A_1| \le | \det A|$$

 $\le (|a_{11}| + |b^H A_1^{-1} c|) | \det A_1|$

we have

$$\left(|a_{11}| - r_1 \sum_{j=2}^{n} |a_{ij}|\right) |\det A_1| \le |\det A|$$

$$\le \left(|a_{11}| + r_1 \sum_{j=2}^{n} |a_{1j}|\right) |\det A_1|$$

In view of the above inequality, applying these bounds now to A_1 and so on proves Theorem 2.2.

Theorem 2.1 gives a theoretical result on diagonally dominant matrices and Theorem 2.2 can be used to estimate the lower bounds for the number of spanning trees of some graphs (see [7]) and the lower bounds for the smallest singular values of such matrices (see [8]).

Acknowledgements

The author would like to thank the referee for her helpful suggestions and several insightful comments.

REFERENCES

- 1. A. Berman et al. Nonnegative Matrices in the Mathematical Sciences, Academic Press, New York, 1979.
- 2. C. R. Johnson. A Gerschgorin-type lower bound for the smallest singular value, *Lin. Alg. Appl.*, 112, 1–7, 1989.
- You Zhao-Yong et al. The distributions of eigenvalues of conjugate generalized diagonally dominant matrices, J. Math. Research and Exposition (in Chinese), 9(2), 309–310, 1989.
- 4. Yong Xue-Rong, Applying H-matrices to determine the positive stability of some matrices, *J. Engine. Math.*, 8(2), 163–169, 1991.
- 5. Shi Zhong-Ci. A note on nonsingularity of the interpolating matrix of cubic spline, *Math. Numer. Sinica*, 5(2), 195–204, 1983.
- 6. R. S. Varga. On diagonal dominance arguments for bounding $||A^{-1}||_{\infty}$, Lin. Alg. Appl., 14, 211–217, 1976.
- 7. N. Biggs. Algebraic Graph Theory, Cambridge, 1976.
- 8. Y. P. Hong *et al.* A lower bound for the smallest singular value, *Lin. Alg. Appl.*, 172, 27–32, 1992.