

Linear Algebra and its Applications 317 (2000) 201–205

LINEAR ALGEBRA AND ITS APPLICATIONS

www.elsevier.com/locate/laa

Disproof of a conjecture on the existence of the path-recursive period for a connected graph^{α}

Xuerong Yong[∗] , Shiyi Cao

Department of Mathematics, Xinjiang University, Urumqi 830046, People's Republic of China Received 11 June 1997; accepted 5 May 2000

Submitted by R.A. Brualdi

Abstract

A sufficient and necessary condition on the existence of the path-recursive period for a graph has been established in this paper. This disproves the conjecture proposed in [R. Shi, Path polynomials of a graph, Linear Algebra Appl. 236 (1996) 181–187]. Some results presented in [R. Shi, Path polynomials of a graph, Linear Algebra Appl. 236 (1996) 181–187; R.B. Bapat, A.K. Lal, Path-positive graphs, Linear Algebra Appl. 149 (1991) 125–149] have also been included. © 2000 Elsevier Science Inc. All rights reserved.

Keywords: Adjacency matrix; Eigenvalue; Path-recursive period; Path polynomial

1. Introduction

All graphs considered here are simple and undirected.

Let *G* denote a graph with vertex set $\{v_1, \ldots, v_n\}$. Its adjacency matrix $A(G)$ is defined to be the $n \times n$ (0, 1) matrix (a_{ij}) , where $a_{ij} = 1$ if and only if v_i is adjacent to v_i , and $a_{ij} = 0$ otherwise. Then $A(G)$ is a symmetric $(0, 1)$ matrix with each diagonal entry equal to 0. The determinant det($\lambda I - A(G)$) is called the characteristic polynomial of *G*. The *n* eigenvalues of $A(G)$ are known as the *n* eigenvalues of the graph *G*.

 α This work was supported in part by XJEC grant of China and by CERG grant HKUST652/95E of Hong Kong. [∗] Corresponding author. Present address: Department of Computer Science, Hong Kong University of

Science and Technology, Clear Water Bay, Kowloon, Hong Kong. Fax: +852-2358-1477.

E-mail address: xryong@cs.ust.hk (X. Yong).

For any positive integer k, we denote by $P_k(\lambda)$ the characteristic polynomial of the adjacency matrix of the path of length $k - 1$ on k vertices, i.e.,

$$
P_k(\lambda) = \det(\lambda I - P_k), \quad k = 1, 2, 3, \dots,
$$

where $P_k = (p_{ij})$ is a symmetric (0, 1) matrix of order k, and $p_{ij} = 1$ iff $|i - j| = 1$, $1 \leq i, j \leq k$. Define $P_0(\lambda) = 1$. For an $n \times n$ matrix *M*, we also make the convention that $P_0(M) = I$, the identity matrix of order *n*. The matrices $P_k(M)$, $k =$ $0, 1, 2, \ldots$, are called the path polynomials of the matrix *M*. Analogically, $P_k(A(G))$ are called path polynomials of graph *G* [1]. Recently, $P_k(\lambda)$ has been investigated by several authors, for example [1–4].

Definition 1 [1]. Let $A = A(G)$ be the adjacency matrix of G. If there exists a positive integer $m, m \geq 2$, such that

$$
P_m(A) = [P_{m-2}(A) + I] + I, \qquad P_{m+1}(A) = P_{m-1}(A) + A,
$$

then the least integer *m* is called the path-recursive period of *G*, denoted by $PRP(G) = m$.

The following conjecture was posed by Shi [1].

Conjecture. There is a path-recursive period for any tree; indeed, for any connected graph.

In this paper, we consider the above conjecture. According to the discussions the answer to the conjecture is negative. Some results presented in [1,3] are included, too.

2. The path-polynomials

The following lemma is from [4].

Lemma 1. *Define* $P_0(\lambda) = 1$, $P_1(\lambda) = \lambda$, *where* λ *is any complex number. Then for* $k \geq 2$ *the path-polynomial* $P_k(\lambda)$ *is determined by*

(i)
$$
P_k(\lambda) = \lambda P_{k-1}(\lambda) - P_{k-2}(\lambda)
$$
,

(ii)
$$
P_k(\lambda) = \begin{cases} \frac{\sin((k+1)\theta)}{\sin \theta}, & \theta = \arccos \frac{\lambda}{2}, & |\lambda| < 2, \\ k+1, & \lambda = 2, \\ (-1)^k(k+1), & \lambda = -2, \\ \frac{\sinh((k+1)\theta)}{\sinh(\theta)}, & \theta = \arccos \frac{\lambda}{2}, & |\lambda| > 2, \end{cases}
$$

where $\sinh \theta$ *and* $\arccosh(\frac{1}{2}\lambda)$ *are the hyperbolic sine and anti-hyperbolic cosine.*

Proof. Since $P_k(\lambda) = \det(\lambda I - P_k)$, assertion (i) is obvious [5]. On the other hand, it is readily verified that (ii) is the unique solution to the difference equation (i). \square

We would like to point out that, when $|\lambda| < 2$, $P_k(\lambda)$ is the Chebyshev polynomial of the second kind.

Corollary 2. *For some number* λ_0 , $P_k(\lambda_0) = 0$ *implies that* $|\lambda_0| < 2$.

The proof of Corollary 2 is by (ii) in Lemma 1.

The following result is from Theorem 1 of Shi [1] which is also a generalization of Theorem 2.5 in [3].

Corollary 3. Let A be an $n \times n$ square matrix. If there exists an integer $r, r \geq 1$, *such that* $P_r(A) = 0$ *, then*

(a) $P_{t(r+1)-1}(A) = 0, t = 1, 2, 3, \ldots,$ (b) $P_{r+s}(A) = -P_{r-s}(A), 0 \le s \le r,$ and (c) $P_{2t(r+1)+s} = P_s(A), t = 0, 1, 2, ..., 0 \le s \le 2r + 1.$

Proof. Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be the *n* eigenvalues of *A*. Then it is seen that $P_r(A) = 0$ implies that $P_r(\lambda_j) = 0$, $j = 1, 2, ..., n$. Therefore, from Corollary 2, we have that the spectral radius of *A* $\rho(A) = \max_{1 \le i \le n} |\lambda_i| < 2$. This also yields that

$$
P_r(A) = \sin[(r+1)\arccos(\frac{1}{2}A)]\sin\arccos(\frac{1}{2}A)^{-1} = 0,
$$

which is equivalent to

(d) $\sin[(r+1)\arccos(\frac{1}{2}A)] = 0$, $\rho(A) < 2$.

By (d) it is readily to show that assertions (a) – (c) are true. Here we give only the proof of (a), the others follow in a similar fashion. In fact, for any integer *t*, we have

$$
P_{t(r+1)-1}(A) = \sin[t(r+1) - 1 + 1) \arccos(\frac{1}{2}A)] \sin \arccos(\frac{1}{2}A)^{-1}
$$

= $\sin[t(r+1) \arccos(\frac{1}{2}A)] \sin \arccos(\frac{1}{2}A)^{-1}$
= 0.

This completes the proof of (a). \square

Corollary 3 is the main result of [1], see Theorem 1 in [1].

Remark 1. Lemma 2.4 given by Bapat and Lal [3] follows in a similar fashion. Furthermore, (1) and (2) in Lemma in [1] are equivalent (the proof (2) \Longrightarrow (1) is by induction).

3. Disproof of the conjecture

Throughout this section, we always assume that $A = A(G)$ is the adjacency matrix of graph *G*. Thus *A* is a symmetric (0, 1) matrix. Therefore, the *n* eigenvalues of *A*, say $\lambda_1, \lambda_2, \ldots, \lambda_n$, are real numbers. This yields the following.

Lemma 4. *For* $m \ge 2$ *, the relations*

$$
P_m(A) = [P_{m-2}(A) + I] + I,
$$

\n
$$
P_{m+1}(A) = P_{m-1}(A) + A
$$
\n(1)

hold if and only if

$$
P_m(\lambda_i) = P_{m-2}(\lambda_i) + 2,
$$

\n
$$
P_{m+1}(\lambda_i) = P_{m-1}(\lambda_i) + \lambda_i, \quad i = 1, 2, ..., n.
$$
\n(2)

Proof. Since *A* is real symmetric, the assertions are obvious. \Box

Theorem 5. *If* $\lambda_i \neq 2$, $i = 1, 2, ..., n$, *then G has a path-recursive period* $PRP(G) = m_0$ *if and only if* m_0 *is the least number such that*

$$
P_{m_0-2}(\lambda_i) = -1, \quad P_{m_0-1}(\lambda_i) = 0, \quad i = 1, 2, \dots, n.
$$

Proof. According to Lemma 4, if G has a path-recursive period $PRP(G) = m_0$, then

$$
P_{m_0}(\lambda_i) = P_{m_0 - 2}(\lambda_i) + 2,
$$

\n
$$
P_{m_0 + 1}(\lambda_i) = P_{m_0 - 1}(\lambda_i) + \lambda_i, \quad i = 1, 2, ..., n.
$$
\n(3)

Since we have, for an arbitrary *m*, that

$$
P_{m+1}(\lambda_i) = \lambda_i P_m(\lambda_i) - P_{m-1}(\lambda_i), \quad i = 1, 2, \ldots, n,
$$

then

$$
\lambda_i P_{m_0 - 2}(\lambda_i) + (2 - \lambda_i^2) P_{m_0 - 1}(\lambda_i) = -\lambda_i, 2P_{m_0 - 2}(\lambda_i) - \lambda_i P_{m_0 - 1}(\lambda_i) = -2.
$$
\n(4)

Now

 $\lambda_i \neq 2, \quad i = 1, 2, \ldots, n,$

yields

$$
P_{m_0-2}(\lambda_i) = -1, \quad P_{m_0-1}(\lambda_i) = 0, \quad i = 1, 2, \dots, n. \tag{5}
$$

Conversely, by using Lemma 4 and noting that $(5) \implies (4) \implies (3)$ we can get the other part. \square

Corollary 6. *If there exists an index* i_0 , $1 \leq i_0 \leq n$, *such that* $|\lambda_{i_0}| > 2$, *then* G has *no path-recursive period.*

The proof of the claim can be verified by Lemmas 1,4 and Theorem 5.

Since there are a many graphs (including trees) whose spectral radii are larger than 2, by Corollary 6, this disproves the validity of the conjecture.

Acknowledgement

We are very grateful to the anonymous referee for giving valuable suggestions towards improving the proofs and pointing out some errors in the original version of this paper.

References

[1] R. Shi, Path polynomials of a graph, Linear Algebra Appl. 236 (1996) 181–187.

- [2] R.A. Beezeer, On the polynomial of a graph, Linear Algebra Appl. 63 (1984) 221–225.
- [3] R.B. Bapat, A.K. Lal, Path-positive graphs, Linear Algebra Appl. 149 (1991) 125–149.
- [4] R.B. Bapat, A.K. Lal, Path-positivity and infinite Coxeter groups, Linear Algebra Appl. 196 (1994) 19–35.
- [5] G.H. Golub, C. Van Loan, Matrix Computations, second ed., Johns Hopkins University Press, Baltimore, MD, 1989.