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Abstract

A sufficient and necessary condition on the existence of the path-recursive period for a
graph has been established in this paper. This disproves the conjecture proposed in [R. Shi,
Path polynomials of a graph, Linear Algebra Appl. 236 (1996) 181–187]. Some results pre-
sented in [R. Shi, Path polynomials of a graph, Linear Algebra Appl. 236 (1996) 181–187;
R.B. Bapat, A.K. Lal, Path-positive graphs, Linear Algebra Appl. 149 (1991) 125–149] have
also been included. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

All graphs considered here are simple and undirected.
Let G denote a graph with vertex set{v1, . . . , vn}. Its adjacency matrixA(G) is

defined to be then × n (0, 1) matrix(aij ), whereaij = 1 if and only ifvi is adjacent
to vj , andaij = 0 otherwise. ThenA(G) is a symmetric (0, 1) matrix with each di-
agonal entry equal to 0. The determinant det(λI − A(G)) is called the characteristic
polynomial ofG. Then eigenvalues ofA(G) are known as then eigenvalues of the
graphG.
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For any positive integerk, we denote byPk(λ) the characteristic polynomial of
the adjacency matrix of the path of lengthk − 1 onk vertices, i.e.,

Pk(λ) = det(λI − Pk), k = 1, 2, 3, . . . ,

wherePk = (pij ) is a symmetric (0, 1) matrix of orderk, andpij = 1 iff |i − j | = 1,
1 6 i, j 6 k. DefineP0(λ) = 1. For ann × n matrix M, we also make the con-
vention thatP0(M) = I , the identity matrix of ordern. The matricesPk(M), k =
0, 1, 2, . . . , are called the path polynomials of the matrixM. Analogically,Pk(A(G))

are called path polynomials of graphG [1]. Recently,Pk(λ) has been investigated by
several authors, for example [1–4].

Definition 1 [1]. Let A = A(G) be the adjacency matrix ofG. If there exists a posi-
tive integerm, m > 2, such that

Pm(A) = [
Pm−2(A) + I

] + I, Pm+1(A) = Pm−1(A) + A,

then the least integerm is called the path-recursive period ofG, denoted by
PRP(G) = m.

The following conjecture was posed by Shi [1].

Conjecture. There is a path-recursive period for any tree; indeed, for any connected
graph.

In this paper, we consider the above conjecture. According to the discussions the
answer to the conjecture is negative. Some results presented in [1,3] are included,
too.

2. The path-polynomials

The following lemma is from [4].

Lemma 1. DefineP0(λ) = 1, P1(λ) = λ, whereλ is any complex number. Then for
k > 2 the path-polynomialPk(λ) is determined by

(i) Pk(λ) = λPk−1(λ) − Pk−2(λ),

(ii) Pk(λ) =




sin(k + 1)θ
sinθ

, θ = arccosλ2 , |λ| < 2,

k + 1, λ = 2,

(−1)k(k + 1), λ = −2,
sinh(k + 1)θ

sinhθ
, θ = arccoshλ2, |λ| > 2,

wheresinhθ andarccosh(1
2λ) are the hyperbolic sine and anti-hyperbolic cosine.
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Proof. SincePk(λ) = det(λI − Pk), assertion (i) is obvious [5]. On the other hand,
it is readily verified that (ii) is the unique solution to the difference equation (i).�

We would like to point out that, when|λ| < 2,Pk(λ) is the Chebyshev polynomial
of the second kind.

Corollary 2. For some numberλ0, Pk(λ0) = 0 implies that|λ0| < 2.

The proof of Corollary 2 is by (ii) in Lemma 1.
The following result is from Theorem 1 of Shi [1] which is also a generalization

of Theorem 2.5 in [3].

Corollary 3. Let A be ann × n square matrix. If there exists an integer r, r > 1,

such thatPr(A) = 0, then
(a) Pt(r+1)−1(A) = 0, t = 1, 2, 3, . . . ,

(b) Pr+s (A) = −Pr−s (A), 0 6 s 6 r, and
(c) P2t (r+1)+s = Ps(A), t = 0, 1, 2, . . . , 0 6 s 6 2r + 1.

Proof. Let λ1, λ2, . . . , λn be then eigenvalues ofA. Then it is seen thatPr(A) = 0
implies thatPr(λj ) = 0, j = 1, 2, . . . , n. Therefore, from Corollary 2, we have that
the spectral radius ofA ρ(A) = max16i6n |λi | < 2. This also yields that

Pr(A) = sin[(r + 1) arccos(1
2A)] sin arccos(1

2A)−1 = 0,

which is equivalent to

(d) sin[(r + 1) arccos(1
2A)] = 0, ρ(A) < 2.

By (d) it is readily to show that assertions (a)–(c) are true. Here we give only the
proof of (a), the others follow in a similar fashion. In fact, for any integert, we
have

Pt(r+1)−1(A)=sin[t (r + 1) − 1 + 1) arccos(1
2A)] sin arccos(1

2A)−1

=sin[t (r + 1) arccos(1
2A)] sin arccos(1

2A)−1

=0.

This completes the proof of (a).�

Corollary 3 is the main result of [1], see Theorem 1 in [1].

Remark 1. Lemma 2.4 given by Bapat and Lal [3] follows in a similar fashion.
Furthermore, (1) and (2) in Lemma in [1] are equivalent (the proof(2) H⇒ (1) is by
induction).
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3. Disproof of the conjecture

Throughout this section, we always assume thatA = A(G) is the adjacency ma-
trix of graphG. ThusA is a symmetric (0, 1) matrix. Therefore, then eigenvalues of
A, sayλ1, λ2, . . . , λn, are real numbers. This yields the following.

Lemma 4. For m > 2, the relations

Pm(A) = [
Pm−2(A) + I

] + I,

Pm+1(A) = Pm−1(A) + A
(1)

hold if and only if

Pm(λi) = Pm−2(λi) + 2,

Pm+1(λi) = Pm−1(λi) + λi, i = 1, 2, . . . , n.
(2)

Proof. SinceA is real symmetric, the assertions are obvious.�

Theorem 5. If λi /= 2, i = 1, 2, . . . , n, then G has a path-recursive period
PRP(G) = m0 if and only ifm0 is the least number such that

Pm0−2(λi) = −1, Pm0−1(λi) = 0, i = 1, 2, . . . , n.

Proof. According to Lemma 4, ifG has a path-recursive period PRP(G) = m0, then

Pm0(λi) = Pm0−2(λi) + 2,

Pm0+1(λi) = Pm0−1(λi) + λi, i = 1, 2, . . . , n.
(3)

Since we have, for an arbitrarym, that

Pm+1(λi) = λiPm(λi) − Pm−1(λi), i = 1, 2, . . . , n,

then

λiPm0−2(λi) + (2 − λ2
i )Pm0−1(λi) = −λi,

2Pm0−2(λi) − λiPm0−1(λi) = −2.
(4)

Now

λi /= 2, i = 1, 2, . . . , n,

yields

Pm0−2(λi) = −1, Pm0−1(λi) = 0, i = 1, 2, . . . , n. (5)

Conversely, by using Lemma 4 and noting that(5) H⇒ (4) H⇒ (3) we can get
the other part. �

Corollary 6. If there exists an indexi0, 1 6 i0 6 n, such that|λi0| > 2, then G has
no path-recursive period.
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The proof of the claim can be verified by Lemmas 1,4 and Theorem 5.
Since there are a many graphs (including trees) whose spectral radii are larger

than 2, by Corollary 6, this disproves the validity of the conjecture.
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