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a b s t r a c t

A read/write isolatedmemory is a binary re-writable medium in which (i) two consecutive
locations cannot both store 1’s and also in which (ii) two consecutive locations cannot both
be modified during the same rewriting pass. Its channel capacity C , in bits per symbol per
rewrite, is defined as

C = lim
k,r→∞

log2 N(k, r)
kr

,

where k is the size of the memory in binary symbols, r is the lifetime of the memory in
rewriting cycles, and N(k, r) is the number of distinct sequences of r-characters that sat-
isfy the constraints. This quantity was originally considered by Cohn (1995) who proved
that 0.509 . . . ≤ C ≤ 0.560297 . . . and conjectured that C = 0.537 . . .. Subsequently,
Golin et al. (2004) refined the bounds to 0.53500 . . . ≤ C ≤ 0.55209 . . . and conjectured
that C = 0.5350 . . ..

In this paper, we develop a new technique for computing C as a particular type of
constrained binary matrix and obtain that

C = 0.53501 . . . .

The methods introduced in this note are not specific to this particular problem but can
also be used to consider various other computational counting problems.

© 2015 Published by Elsevier B.V.

1. Introduction

Binary (0, 1) sequences in a communication channel are often required to satisfy predefined specific constraints that
guarantee reliable storage or transmission. The set of all permissible binary memory configurations of a given size can be
viewed as a channel alphabet that obeys specific restrictions. A read/write isolated memory (RWIM) is a binary, linearly
ordered, re-writable storage medium satisfying two restrictions. The first, the read restriction states that no two consecutive
positions in the memory may both store 1’s. The second, the write restriction, states that when the memory is rewritten no
two consecutive positions in thememory are allowed to change. A fixed sizememory can be viewed as a character sent over
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Fig. 1. Matrix B1 satisfies the RWIM constraints. Matrix B2 does not for two reasons: the two consecutive bold 1’s in the first row contradict the read
restriction and the bold 2 × 2 submatrix in the fourth and fifth columns contradicts the write restriction.

a noiseless communication channel; the memory contents after rewriting pass i is the ith character sent over the channel.
The write restrictions dictate which characters may follow which characters in the channel.

The channel capacity for a rewritable memory, measured in bits per character was studied in [20,21]. The capacity of
memory, in bits per rewrite, is defined as

Ck = lim
r→∞

1
r
log2 N(k, r),

where k is the size of the memory in binary symbols, r is the lifetime of the memory in rewriting cycles, and N(k, r) is
the number of distinct sequences of r-characters that satisfy the constraints. Note that N(k, r) is equal to the number
of distinct paths through a channel graph that describes permissible transitions among characters. Shannon showed that
Ck = log2 λk, where λk is the spectral radius of the channel graph, i.e., the largest eigenvalue of its adjacency matrix. (From
the Perron–Frobenius Theorem in the theory of nonnegative matrices [1], λk is a positive number.) Shannon also proved
that the capacity is an upper bound on the rate achievable by any coding scheme. A code is nearly optimal if the capacity
obtained from computation is very close to its true value.

The channel capacity C of RWIM, in bits per symbol per rewrite, can be defined as [7,11]

C = lim
k,r→∞

log2 N(k, r)
kr

. (1)

The limit has been proven to exist but the exact value of C is difficult to obtain.
In applications the codes with the read and/or write restrictions above are typical of those that used magnetic recording

andoptical recording. To the best of our knowledge, FreimanandWyner [8]were the first to consider read isolatedmemories,
followed by Kautz [14]. Write isolated memories were originally examined by Robinson [18] and then Cohen [6]. This
memory is used in the context of an asymmetric error-correcting ternary code and re-writable optical disc. They showed
independently that the two different types of memories have the same capacity log2 ϕ = 0.694 . . ., in bits per symbol, in
which ϕ is the larger root of the Fibonacci recurrence: Fn+2 = Fn+1 + Fn.

A (d, k)-Runlength Limited (RLL) code over the binary alphabet {0, 1} has d and k being the minimum and maximum
permitted numbers of 0’s separating consecutive 1’s in its each codeword, respectively. This class of codes has wide
applications [13]. As examples, the (1, 3)-RLL constraint is often used in magnetic disc drivers and the (2, 10)-RLL is in
compact audio discs. The (1, ∞)-RLL is the read isolated constraint.

The (d, k)-RLL codeswere sets of one dimensional strings. A 2-D code is a set of 2-D arrays/matrices thatmust each satisfy
a set of constraints. The constraints are often given as horizontal (on the rows) and vertical (on the columns). Let N(k, r)
now be the number of n × r matrices that satisfy the given constraints. The capacity per bit of the 2-D code is given by

C = lim
k,r→∞

log2 N(k, r)
kr

. (2)

A 2-D (d, k)-RLL code is a matrix whose rows and columns all individually satisfy the 1-D(d, k)-RLL constraint. Over the
last two decades the capacity of these codes have started to be studied. A relatively recent contribution is [9].

Notice that (2) is exactly in the same form as (1) so channel capacity looks very similar to 2-D code capacity. In fact, the
RWIM channel can actually be rewritten as a 2-D code as follows. For a memory of size n with lifetime r create an r × k
binary matrix B in which row i is the contents of the memory at time i. B must satisfy the following two constraints (see
Fig. 1 for examples):

1. Read restriction: B does not contain any two horizontally consecutive ones, i.e., it does not contain any 1 × 2 submatrix
(1, 1).

2. Write restriction: B does not contain any 2 × 2 submatrix of the form

0 1
1 0


or

1 0
0 1


.

Any B that satisfies these two constraints represents a legal set of rewrites for a r bitmemory in the RWIM channel soN(k, r)
for the RWIM also represents the number of 2-D codewords that satisfy the read and write restrictions above and the RWIM
channel capacity is the same as the capacity of the 2-D RWIM codes.

When Cohen originally investigated the capacity of the RWIM constraint in [7] he derived the following upper and lower
bounds on the capacity C:

0.509 . . . ≤ C ≤ 0.560297 . . . .
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On the basis of his computational results, he conjectured that the largest eigenvalue of the channel graph might satisfy a
second-order ordinary linear difference equation, and the limiting capacity C would be about log2 1.451 = 0.537 . . . in bits
per symbol per rewrite. Subsequently, this problem was considered by the second and third authors [11] and the bounds
were improved to

0.5350 . . . ≤ C ≤ 0.55209 . . . .

These bounds were obtained by modeling the problem as a constrained two-dimensional binary matrix problem and then
bymodifying the transfer matrix technique to bound the largest eigenvalues (the spectral radius) of the associated horizontal
and vertical transfer matrices (defined in the next section). In that paper, the capacity C was conjectured to satisfy

0.5350 . . . ≤ C ≤ 0.5350 . . . . (3)

We note that Roth [19] used a modified version of the cylindrical bounding technique introduced by Carkin and Wilf
in [3] (which requires calculating the largest eigenvalues of a different type of matrix) to show that the capacity satisfies
C ≤ 0.535232, strengthening the validity of the conjecture (3).

This paper further considers the RWIM capacity problem. Transfer matrix techniques define infinite sequences of larger
and larger matrices. The spectral radius of each of these matrices gives bounds on capacity. The larger the original matrix,
the better the bounds its spectral radius usually yields. Unfortunately, these matrices usually grow in size exponentially,
severely restricting the number of matrices whose spectral radii can be calculated. Our major contribution1 is to make use
of the recursive properties of the vertical and horizontal transfer matrices, to compress the sizes of the matrices in ways
that permit calculating the spectral radii. This permits showing that the capacity satisfies

C = 0.53501 . . . , (4)

validating the conjecture. The compression techniques introduced are different than the ones that have appeared previously
in the literature. More interestingly, the methods can be modified to consider some other counting problems in combina-
torics.2

Throughout the paper, ‘t ’ stands for the transpose of a matrix or a vector, and ‘1’ the all-ones column vector with an
appropriate size. ρ(A) denoted the spectral radius of a square matrix A.

In the next section we will describe the two classes of transfer matrices. Their recurrence properties are crucial in our
consideration. In Section 3wewill derive our first improved upper bound on C by compressing the vertical transfermatrices
through taking the Euclidean norm on their sub-matrices (blocks of the transfer matrices) and show that the upper bound
goes to the true capacity as the size of matrix approached infinity. Our proof of the conjecture (4) will be given in Section 4
by peeling off the zero eigenvalues from the horizontal transfer matrices to halve their sizes and compute their largest
eigenvalues. We will conclude the paper by proposing an open problem.

2. The vertical and horizontal transfer matrices

In the previous section we noted that a 2-D codeword is a 2-D array (matrix) that satisfies certain constraints. Letm be a
fixed integer and Vm be the indexed set of all sizem vectors (strings) that may appear as rows in some allowed n × m (0, 1)
matrix in a 2-D code S with given constraints. We say that a pair of vectors (vi, vj) is valid if vi, vj ∈ Vm and the 2 × m array

vi
vj


does not violate the given constraints. If n is a fixed integer we can set Vn to be all of the columns of size n columns that

can appear in an allowedm× nmatrix and say that (vi, vj) is valid if vi, vj ∈ Vn, if the n× 2 array (vivj) does not violate the
given constraints.

A transfer matrix Tm = (tij) corresponding to a given code satisfies that tij = 1 if (vi, vj) is valid and 0 otherwise.
Note that for a given constrained code for fixed m, (or n) the transfer matrix has size |Vm| × |Vm| (|Vn| × |Vn|) with its

structure being determined by the orderings of the vectors. In the literature the lexicographic order is often used. In two (or
higher) dimensional constrained codes, thematrices are determined by the choice of direction chosen. For the 2-D RLL codes
in which the horizontal and vertical restrictions are the same, the two sets of transfer matrices are the same. In other cases,
such as the RWIM one, then transfer matrices in the different directions can be completely different [11]. We follow [11], in
calling the transfer matrix Ak, introduced by Cohn [7], which fixes k the size of the memory, the vertical transfer matrix and
call the transfer matrix Ār derived in [11] the horizontal transfer matrix, which is obtained by swapping the lifetime r and
the memory size k and considering towards the r direction.

The two different types of transfer matrices, which have very different recurrent properties, will be used differently in
our analysis.

The first part of the following theorem is due to Cohn ([7], Theorem 1) and the second part was derived by the second
and third authors, and P. Zhang and L. Sheng in ([11], Definition 1 and Lemma 5).

1 A preliminary version of these results appeared in DCC’02 [22].
2 For example, they can be applied to counting the number of structures in some special graphs, such as perfect matchings, spanning trees, and

independent sets [5,15,16].
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Theorem 1 ([7,11]). If we arrange the vectors of read/write isolated constraints in the lexicographic order, then the vertical, and
horizontal transfer matrices Ak, and Ār are given respectively by

A0 = 1, A1 =


1 1
1 1


, Ak =


Ak−1 Âk−2

Ât
k−2 Ak−2


,

where Ak is an fk+2 × fk+2 matrix,3 fk+2 = fk+1 + fk, f0 = 0, f1 = 1, and Âk−2 =


Ak−2
0


is of size fk+1 × fk, and

Ār =


Ār−1 Br−1
Bt
r−1 0


, Br−1 =


Ār−2 Br−2
0 0


with initial conditions: Ā1 =


1 1
1 0


, B1 =


1 1
0 0


where Ār is of size 2r

× 2r .

An n × n nonnegative matrix is called primitive if there exists a positive integer p such that Ap is an entry-wise positive
matrix. The Perron–Frobenius Theorem in nonnegative matrix theory states that the largest eigenvalue (in modulus) of a
primitive matrix is positive and strictly dominants the modulus of all the other eigenvalues [1]. This eigenvalue therefore
is equal to the spectral radius of the matrix. Noting that both Ak and Ār are symmetric and their first rows are all 1’s,
by straightforward calculations we see that their squares are entry-wise positive and so both of them are primitive. The
following theorem is combination of Lemmas 1, 2, 6, and 7 from [11].

Theorem 2 ([11]). The channel capacity C of read/write isolated memory exists and satisfies:

•

C = lim
k,r→∞

log2 N(k, r)
kr

, and N(k, r) = 1tAr−1
k 1 = 1t Āk−1

r 1.

• if λk and µr are the largest eigenvalues of Ak and Ār , respectively, then

lim
r→∞

log2 N(k, r)
r

= log2 λk, lim
k→∞

log2 N(k, r)
k

= log2 µr .

• for ∀r, k ≥ 1,

max

log2

µ2r

µ2r−1
, log2

λ2k

λ2k−1


≤ C ≤ min


log2 µr

r
,
log2 λk

k


.

Making use of Theorem 2 we now can prove the following lemma.

Lemma 3. Let λk and µr be the largest eigenvalues of Ak and Ār , respectively. Then we have

lim
k→∞

log2
λk

λk−1
= lim

r→∞
log2

µr

µr−1
= inf

k≥1
log2 λ

1
k
k = inf

r≥1
log2 µ

1
r
r = C .

Proof. Letµ1, µ2, . . . , µ2r and x1, x2, . . . , x2r be the eigenvalues and their corresponding columnorthonormal eigenvectors
of Ār , i.e., Ārxi = µixi and xti xi = 1 for all i. Then using the spectral decomposition of Ār , Ār =


i µixixti , for all k we have

that Āk
r =


i µ

k
i xix

t
i and therefore

N(k, r) = 1t Āk−1
r 1 =


i

αiµ
k−1
i ,

in which µr is the largest eigenvalue of the matrix. Note that αi = (1txi)2, i = 1, 2, . . . , 2r , xr is entry-wise positive [1], and
so αr > 0. From Theorem 2

lim
k→∞

λk

λk−1
= lim

k→∞

lim
r→∞


1tAr−1

k 1

1tAr−2
k−11

 1
r

= lim
r→∞

lim
k→∞


1t Āk−1

r 1

1t Āk−2
r 1

 1
r

3 fi is the Fibonacci sequence.
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= lim
r→∞

lim
k→∞



i

αiµ
k−1
i

i
αiµ

k−2
i


1
r

= lim
r→∞

µ
1
r
r = 2C .

The second equality follows similarly from Theorem 2. �

3. Approaching the capacity from above by making use of the vertical transfer matrices

In this section, by taking the Euclidean norm on the sub-matrices (blocks) in the vertical transfer matrices Ak, we obtain
smaller compressed matrices. The largest eigenvalues of these smaller matrices, will permit deriving upper bounds on the
capacity C that approach C as the size of these compressed matrices increases.

The following lemma plays an important role in our discussion. Its proof is straightforward and can be found in [10].

Lemma 4. Let T be an n × n matrix and ni positive integers such that
k

i=1 ni = n. Decompose

T =

T11 T12 · · · T1k
T21 T22 · · · T2k
· · · · · · · · · · · ·

Tk1 Tk2 · · · Tkk

 = (Tij),

where, for i, j = 1, 2, . . . , k, the Tij are ni × nj matrices (called sub-matrices). For each Tij, define a matrix norm by

∥Tij∥ni,nj = sup
xj≠0

∥Tijxj∥ni

∥xj∥nj
, i, j = 1, 2, . . . , k,

and let M = (mij),mij = ∥Tij∥ni,nj , i, j = 1, 2, . . . , k. Then

ρ(T ) ≤ ρ(M),

where ρ(X) is the spectral radius of matrix X. The matrix M is called a compressed matrix of T .

From Theorem 1 we see that the transfer matrices Ak are real symmetric, k = 1, 2, . . ., and so taking the Euclidean norm
∥ · ∥2 on the matrices Ak, we have ∥Ak∥2 = supx≠0

∥Akx∥2
∥x∥2

= λk, the spectral radius of Ak, and

∥Ak−1∥2 = λk−1, ∥Ak−2∥2 = λk−2, ∥Âk−2∥2 = λk−2.

(See e.g., [4], or [17].) This implies that, if we let

M1 =


∥Ak−1∥2 ∥Âk−2∥2

∥Ât
k−2∥2 ∥Ak−2∥2


=


λk−1 λk−2
λk−2 λk−2


,

then from Lemma 4, λk ≤ ρ(M1), and therefore

λk

λk−1
≤

ρ(M1)

λk−1
= ρ


M1

λk−1


.

Now let Q0(x) = 1 and Q1(x) =


1 x
x x


. Since each eigenvalue of a matrix is a continuous function of its elements ([2],

p. 153), taking the limit as k approaches to infinity on both sides of the above inequalities and applying Lemma 3 yield
2C

≤ ρ(Q1(2−C )). Similarly, noting that Ak also has the following recurrence relation

Ak =

Ak−2 Âk−3 Ak−2

Ât
k−3 Ak−3 0

Ak−2 0 Ak−2

 ,

we have

M2
def
=

∥Ak−2∥2 ∥Âk−3∥2 ∥Âk−2∥2

∥Ât
k−3∥2 ∥Ak−3∥2 0

∥Ak−2∥2 0 ∥Ak−2∥2

 =


λk−2 λk−3 λk−2
λk−3 λk−3 0
λk−2 0 λk−2


.

Let

Q2(x)
def
=

1 x 1
x x 0
1 0 1


=


Q1(x) Q̂0(x)
Q̂0(x)t 1


, Q̂0(x) =


Q0(x)
0


.
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Then, again from Lemma 4 we have λk ≤ ρ(M2), and therefore

λk

λk−1
·
λk−1

λk−2
=

λk

λk−2
≤

ρ(M2)

λk−2
= ρ


M2

λk−2


.

Similarly, letting k go to infinity implies that 22C
≤ ρ(Q2(2−C )). Continuing the same argument, for the following Fm+2 ×

Fm+2, m = 3, 4, . . ., matrices

Qm(x) =


Qm−1(x) Q̂m−2(x)
Q̂m−2(x)t Qm−2(x)


, Q̂m−2(x) =


Qm−2(x)

0


, (5)

we infer that 2mC
≤ ρ(Qm(2−C )). Note that if we assume that λ0 = 1, and that A0 = 1 then, for m = k, λk = ρ(Qm(1)) =

ρ(Ak).
Summarizing the above derivations yields

Lemma 5. Let {Qm(x)} be the sequence of matrices generated from (5). Then

C ≤
log2 ρ(Qm(2−C ))

m
, (6)

where ρ(Qm(x)) is the spectral radius of Qm(x), m = 1, 2, 3 . . ..

Below we show that the right hand side upper-bound in (6) converges to C as m approaches infinity. To see this, we
apply the strictly monotonic property4 of ρ(Qm(x)) (∀x > 0) to the matrices in Lemma 5. This implies that ∀x ≥ 2−C , 2C

≤

ρ(Qm(x))
1
m . Since in [11] it is shown that 0.5350 . . . ≤ C , we have

2−C < 2−0.535
= 0.69015866 . . . < 1.

On the other hand, since Qm(1) = Am, from Theorem 2 and Lemma 3, ∀x ∈ [0.69015866, 1),

inf
k≥1

ρ(Ak)
1
k = 2C

≤ ρ(Qm(x))
1
m < ρ(Am)

1
m .

If x ≥ 1, then

inf
k≥1

ρ(Ak)
1
k = 2C

≤ ρ(Qm(x))
1
m = x

1
m ρ(Rm(y))

1
m ,

where y =
1
x ≤ 1, R1(y) =


y 1
1 1


, R2(y) =


y 1 y
1 1 0
y 0 y


, and form > 2,

Rm(y) =


Rm−1(y) R̂m−2(y)
R̂m−2(y)t Rm−2(y)


, R̂m−2(y) =


Rm−2(y)

0


.

Now Rm(y) ≤ Rm(1) = Am, this gives rise to

2C
= inf

k≥1
ρ(Ak)

1
k ≤ ρ(Qm(x))

1
m = x

1
m ρ(Rm(y))

1
m ≤ x

1
m ρ(Am)

1
m .

Combining these properties with Theorem 2 yields the following theorem.

Theorem 6. Let m be any given positive integer. Then

• for ∀x ∈ [0.69015866, 1), the compressed matrix Qm(x) satisfies

inf
k≥1

ρ(Ak)
1
k = 2C

≤ ρ(Qm(x))
1
m < ρ(Am)

1
m ;

• for x ≥ 1

inf
k≥1

ρ(Ak)
1
k = 2C

≤ ρ(Qm(x))
1
m ≤ x

1
m ρ(Am)

1
m ,

where ρ(Qm(x)) = ρ(Am) if and only if x = 1.

Consequently, for any given number x > 0.69015866, we have (by Lemma 3)

2C
= inf

m≥1
ρ(Qm(x))

1
m = lim

m→∞
ρ(Qm(x))

1
m = lim

m→∞
ρ(Am)

1
m = inf

k≥1
ρ(Ak)

1
k .

4 The spectral radius of a nonnegative irreducible matrix is strictly increasing with its elements and its corresponding eigenvector is entrywise
positive [1].
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Table 1
Fm is themth Fibonacci number. ρ(Qm(x0)) is the largest eigenvalue of the Fm+2 × Fm+2 compressed matrix Qm(x0).

m Fm+2 ρ(Qm(x0))
log2(ρ(Qm(x0)))

m

1 2 1.5524196988 0.6345186448
2 3 2.1732673267 0.5599328234
3 5 3.2543210622 0.5674521968
4 8 4.6152889202 0.5516052411
5 13 6.8116188717 0.5535995429
6 21 9.7408000844 0.5473400461
7 34 14.2668740681 0.5477996234
8 55 20.5065208518 0.5447513549
9 89 29.9058714421 0.5447063169

10 144 43.0634915800 0.5428393393
11 233 62.7213694907 0.5428077414
12 377 90.6138568737 0.5418049818
13 610 131.2975410982 0.5412843145
14 987 190.3410264771 0.5408887676
15 1597 276.1769813000 0.5406299513
16 2584 399.7392197852 0.5401822073
17 3181 579.6907368666 0.5399493895
18 5765 839.3943441870 0.5396224962

Furthermore, if we work a little bit on the matrix Am − Qm(x), we have

Corollary 1. For ∀x ∈ (−∞, +∞) and an arbitrarily given number m, the compressed matrix Qm(x) satisfies ρ(Am −Qm(x)) =

ρ(Am−2 ⊗ (A1 − Q1(x))) = |1 − x| 1+
√
5

2 ρ(Am−2), and if x ≠ 1, then

2C
= inf

k≥1
ρ(Ak)

1
k = inf

m≥1
ρ(Am − Qm(x))

1
m−2 < ρ(Am)

1
m ,

where ⊗ is the Kronecker product of matrices.

Remark. Note from Lemma 4 that we can obtain different compressedmatrices and so different bounds if we take different
norms on the sub-matrices in Ak, or if we letMi be divided by λk−j, j ≠ i to derive different matrices than Qm(x).

As an example, let us derive a new upper bound from the above discussion. Set x0 = 0.69015866 and a positive integer
m. For i = 1 to m compute xi+1 = (ρ(Qi(x0)))

1
i . Then, for every x0, we can take xm+1 as an upper bound of 2C , and from

Theorem 6 our bound will be convergent to the true capacity C as m approaches infinity. In Table 1 we show the initial
numerical results, where the numbers are computed by the PowerMethod [12] usingMATLAB for x0 = 0.69015866 andm =

1, 2 . . . , 18. By Theorem6 the results are better than the ones for the same sizes of transfermatrices. Note thatm = 18means
that the read/write isolated memory size considered so far is more than 18 bits because we computed the spectral radii of
the compressed matrices Qm rather than those of the transfer matrices Am. Theorem 6, implies that we would be able to get
even better and better upper bounds on C if we continued the computation and the computer had enough memory space.

From Table 1 we see that the convergence speed is not slow, and it is strictly decreasing afterm = 8. Compared with the
previous results addressed in the Introduction, we obtain a new upper bound of C , which is 0.53962245 . . . (it is not better
than Roth’s bound 0.535232 . . ..) We address that this is just an example of finding an upper bound of C by making use of
our theoretical results obtained in this section. Our main interest is to update the bounds and approach the true capacity in
the following section.

We also point out that Lemma 5, permits deriving new recursive and explicit relations on λk that improve the bound
obtained in [7]. For example, for k = 1, 2, . . ., we have

λk ≤
1
2


λk−1 + λk−2 +


(λk−1 − λk−2)2 + 4λ2

k−2


. (7)

In fact, the right-hand side of the above inequality is the larger eigenvalue of matrix M1 introduced in the proof of
Lemma 5, which implies that we have

λk ≤ λk−1 + λk−2, λk ≤
1
2
λk−1 +

1 +
√
5

2
λk−2.

This is because, from Perron–Frobenius Theorem [1], we have that 0 < λk−1 < λk, so

λk ≤
1
2


λk−1 + λk−2 +


(λk−1 − λk−2)2 + 4λ2

k−2


≤

1
2
(λk−1 + λk−2 + λk−1 − λk−2 + 2λk−2)

= λk−1 + λk−2.



C. Wang et al. / Discrete Applied Mathematics 198 (2016) 264–273 271

Combining these inequalities yields

λk ≤
1
2


λk−1 + λk−2 +


(λk−1 − λk−2)2 + 4λ2

k−2


≤

1
2


λk−1 + λk−2 +


λ2
k−3 + 4λ2

k−2


≤

1
2


λk−1 + λk−2 +


5λ2

k−2


=

1
2
λk−1 +

1 +
√
5

2
λk−2.

These inequalities are tighter than the ones derived in ([7], Theorem 7 and its Corollary).

4. Approaching the true capacity

In this section we address the conjectures addressed in the Introduction by calculating much better bounds on the
true capacity C . To obtain the best possible approximation of the largest eigenvalue of the transfer matrices we reduce
the sizes of the horizontal transfer matrices, Ār , by peeling off the zero eigenvalues from the matrices through elementary
operations. This permits calculating the same eigenvalues by doing the calculations on a much smaller matrix, reducing the
work required, in turn permitting the calculation of eigenvalues of larger transfer matrices.

Lemma 7. Let p(x) = det(xI − Ār) be the characteristic polynomial of the 2r
× 2r horizontal transfer matrix Ār . Then

p(x) = det(xI − Ār) = x2
r−1

det(xI − Mr),

where Mr is a nonnegative primitive matrix of size 2r−1
× 2r−1 and is given by

Mr =



Ār−4 Br−4 Ār−4 Br−4 Ār−4 2Ār−4 3Ār−4 6Br−4

Bt
r−4 0 0 0 Bt

r−4 2Bt
r−4 0 0

Ār−4 0 0 0 Ār−4 0 0 0
Bt
r−4 0 0 0 Bt

r−4 0 0 0
Ār−4 Br−4 Ār−4 Br−4 0 0 0 0
Ār−4 Br−4 0 0 0 0 0 0
Ār−4 0 0 0 0 0 0 0
Bt
r−4 0 0 0 0 0 0 0


.

Proof. Using the recurrence relations of the horizontal transfer matrix Ār in Theorem 1 to get

det(xI − Ār) = det


xI − Ār−2 −Br−2 −Ār−2 −Br−2

−Bt
r−2 xI 0 0

−Ār−2 0 xI 0
−Bt

r−2 0 0 xI

 .

For the sake of simplicity, in the following we view the blocks (sub-matrices) in the matrix as elements and proceed
elementary (block) operations. Adding (−1) times row 4 to row 2, and then adding column 2 to column 4, and then
expanding the determinant by row (block) 2 (from linear algebra the operations do not change the value of determinant),
we obtain smaller matrices as follows,

det(xI − Ār) = x2
r−2

det

xI − Ār−2 −Ār−2 −2Br−2

−Ār−2 xI 0
−Bt

r−2 0 xI

 .

Now using again the recurrence relations of Ār−2 and Br−2 in Theorem 1, the determinant on the right hand side of the above
determinant becomes

det



xI − Ār−3 −Br−3 −Ār−3 −Br−3 2Ār−3 −2Br−3

−Bt
r−3 xI −Bt

r−3 0 0 0
−Ār−3 −Br−3 xI 0 0 0
−Bt

r−3 0 0 xI 0 0
−Ār−3 0 0 0 xI 0
−Bt

r−3 0 0 0 0 xI


.
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For this determinant, adding (−1) times row6 to row4, then adding column 4 to column 6, and then expanding the resulting
determinant by row 4, we see that det(xI − Ār) is equal to

x2
r−2

+2r−3
det


xI − Ār−3 −Br−3 −Ār−3 −2Ār−3 −3Br−3

−Bt
r−3 xI −Bt

r−3 0 0
−Ār−3 −Br−3 xI 0 0
−Ār−3 0 0 xI 0
−Bt

r−3 0 0 0 xI

 .

Similarly, repeating the same procedure with the above determinant, one can see easily that det(xI − Ār) is equal to
x2

r−2
+2r−3

det(xI − M1) where M1 is given by

Ār−4 Br−4 Ār−4 Br−4 Ār−4 Br−4 2Ār−4 2Br−4 3Ār−4 3Br−4

Bt
r−4 0 0 0 Bt

r−4 0 2Bt
r−4 0 0 0

Ār−4 0 0 0 Ār−4 0 0 0 0 0
Bt
r−4 0 0 0 Bt

r−4 0 0 0 0 0
Ār−4 Br−4 Ār−4 Br−4 0 0 0 0 0 0
Bt
r−4 0 0 0 0 0 0 0 0 0

Ār−4 Br−4 0 0 0 0 0 0 0 0
Bt
r−4 0 0 0 0 0 0 0 0 0

Ār−4 0 0 0 0 0 0 0 0 0
Bt
r−4 0 0 0 0 0 0 0 0 0


.

Now for det(xI − M1), adding (−1) times row 10 to rows 8 and 6, respectively, then adding columns 8 and 6 to column 10,
and then expanding the resulting determinant by row 8 and row 6, one sees that det(xI − Ār) is equal to

x2
r−2

+2r−3
+2r−4

+2r−4
det(xI − Mr) = x2

r−1
det(xI − Mr)

whereMr is the matrix given in the lemma. The proof is thus completed. �

Smaller matrices thanMr can be obtained if we continue the same argument in the proof of the lemma.
Now let

D =



I 0 0 0 0 0 0 0
0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0

√
2I 0 0

0 0 0 0 0 0
√
3I 0

0 0 0 0 0 0 0
√
6I


.

Then, since DMrD−1 is symmetric and shares the same eigenvalues as Mr , it has the same nonzero eigenvalues as Ār does,
we therefore can use the Power Method [12] to compute the largest eigenvalue of DMrD−1. Since the size of the matrixMr is
half of the size of the transfer matrix Ār , in computation we reduced a lot of work.

In Table 2we show the numerical results of our computation of the largest eigenvalues of the compressedmatrixDMrD−1

by applying the Power Method and Matlab. The largest size of the matrix computed is 8192. In the table the initial 8 results
are same as the ones obtained in [11].

Now combining Theorem 2, Lemma 3, and Table 2 proves the conjecture.

Theorem 8. The channel capacity C of read/write isolated memory is

C = 0.53501 . . . .

5. Conclusion and open problem

In this paper we developed a new technique to bound the channel capacity of read/write isolatedmemory as a particular
type of constrained binary matrix. We derived an upper-bound function of C by compressing the vertical transfer matrix
through taking the Euclidean norm on its ‘elements’ (sub-matrices) and showed that the upper bound function obtained
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Table 2
µr is the largest eigenvalue of the 2r

× 2r transfer matrix Ār .

r 2r µr log2
µr

µr−1

1 2 1.618
2 4 2.302775637 0.5091622465
3 8 3.346462191 0.5392628601
4 16 4.845619214 0.5340443229
5 32 7.021562462 0.5351110622
6 64 10.17359346 0.5349653450
7 128 14.74105370 0.5350103028
8 256 21.35908135 0.5350099454
9 512 30.948359597568 0.535010307223

10 1024 44.842824649376 0.535014214230
11 2048 64.975322373528 0.535014730251
12 4096 94.146459043118 0.535014947823
13 8192 136.414197132806 0.535015053352
14 16384 197.658348650048 0.535015093868

is convergent to the true capacity C . We then peeled off several zero eigenvalues from the horizontal transfer matrices to
halve their sizes and showed that

C = 0.53501 . . . ,

which indicates that the conjecture C = 0.537 . . ., posed by Cohn [7] and the conjecture 0.5350 . . . ≤ C ≤ 0.5350 . . .
addressed in Conclusion of [11] are validated for the first two and four digits, respectively. An open question is:

Is it possible to derive an analytic function for the largest eigenvalue ρ(Ak) of the transfer matrix Ak?
The techniques introduced in this paper are different than the ones that appear in the literature. More interestingly, our

methods can bemodified to considermany other counting problems in combinatorics. For example, combining themethods
introduced in Sections 3 and 4, it is possible to consider counting the number of structures, such as perfect matchings,
spanning trees, and independent sets in the special graphs discussed in [5,15,16] where transfer method techniques are
already being used (they derived compressed matrix from combinatorics, which is completely different from ours).
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