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1. INTRODUCTION

• Capacity is an upper bound on the rate
at which data can be transmitted over
a channel or stored in a data medium.

• Shannon (1948) states that reliable trans-
mision is only possible when we trans-
mit information at a rate below its ca-
pacity.

• Already much work on 1-D capacity.

• 2-D problem in its infancy and cur-
rently very active (Only techniques for
bounding).

• Our Work: (1) theoretical results for
2-D problems; (2) techniques for bet-
ter bounding capacities. (The ideas
and techniques are not confined to spe-
cific 2-D codes.)
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1.1. DATA STORAGE DEVICES
—- Applications

Different data storage devices have differ-
ent constraints on the ways that data can
be coded.

Examples of such devices:

• Conventional diskette and hard diskette
drivers;

• Optical read-only drivers such as CD,
CD-ROM drivers;

•Magnetic tape drivers, digital audio tape
systems;

• Digital compact cassette audio tape sys-
tems.

...

4



1.2. CODES FOR RECORDING

A (d,k)-Runlength Limited (RLL) code is a set
of codewords over {0, 1} all satisfying:

d (k) is the minimum (maximum) number of
0’s separating consecutive 1’s.

Example: ((1,7)-RLL constrints)

...10001000010100000001...; (Y ES)

A 2-D RLL code is a set of binary arrays, each
satisfying both horizontal and vertical (possibly
different) RLL constraints.

Example: The 2-D (1,∞)-RLL code




1 0 0 1 0
0 1 0 0 0
1 0 1 0 0
0 0 0 0 1




,




1 0 1 1 0
1 0 0 0 0
0 1 0 1 0
0 0 0 0 1




.

The first matrix is a good codeword, while the
second one isn’t.
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1.3. SOME RECORDING STAN-
DARDS

•Many commercial systems use the code
with constraint (d, k) = (1, 7).

•Magnetic disc drivers use the (1, 3)-RLL
constraint;

• Compact audio discs use the (2, 10)-
RLL constraint;

• 2-D codes are used in page oriented
storage system, e.g. holographic record-
ing, BUT mostly studied though for
theoretical interests.
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1.4. CONSTRAINED MATRICES

A constrained matrix is a binary array
that does not contain specified forbidden
submatrices. 2-D codes are sets of con-
strained matrices.

An example:
A 2-D (1,∞)-RLL codeword is a con-

strained matrix that does not contain:

(1, 1) or ( 1
1 )

Studied constraints include

• Read/Write isolated memory

• general RLL restricted matrices

• Checkerboard-Code matrices

• other pure combinatorial constraints,
e.g., kings placement on chessboard
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The 2-D RLL Constrained code S
(2)
1,∞

also arises in statistical physics and graph
theory. Previously studied separately on
those areas.

• Burton and Steif (1994) called hard-
square, or hard-core lattice gas sys-
tem

• Engel (1982) called it Fibonacci num-
ber of a lattice,

• Calkin and Wilf (1998) called it inde-
pendent sets in grid graph. Denoted
the constraint by Shs.
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2.1. Definition of Capacity (1-D)

Combinatorial description: The capacity cap(S)
measures the growth rate of the number of se-
quences of size n, N(n; S) in S.

cap(S) = lim
n→∞

log2 N(n; S)

n
.

NOTE: Equivalent Algebraic and Probabilistic
definitions exist, but we don’t need them here.

Example: Consider the (0, 1)-RLL code. It is
easy to see that we have

N(n; S) = N(n−1; S)+N(n−2; S) ≈ c((1+
√

5)/2)n,

the Fibonacci number. Therefore,

cap(S) = log2 (1 +
√

5)/2 = .694....

Intuitively, this means that, when storing data, us-
ing this code each physical bit can, in the asymp-
totic sense, store at most .694... ‘bits of informa-
tion’.
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2.2. DEFINITION OF CAPAC-
ITY (2-D)

Now let N(m,n; S) be number of m× n
arrays that satisfy constraint S.

The Capacity, cap(S), of S measures
the growth rate of N(m,n; S) :

cap(S) = lim
n,m→∞

log2 N(m,n; S)

nm
.

Intuition: cap(S) is the asymptotically
maximum amount of information that can
be transmitted or stored per bit of the ma-
trix.

Note: 2-D Capacity “usually” exists in-
dependent of double-limits order.
Kato and Zeger (1999).
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Following is a list of recent work on bound-
ing the 2-D capacity and other properties
of such matrices. (Previous work of thesis
work is described later.)

• K. Engel (1990)

• N. Calkin and H. Wilf (1998)

•W. Weeks and R. Blahut (1998)

• Z. Nagy and K. Zeger (1998)

• A. Kato and K. Zeger (1999)

• S. Forchhammer and J. Justesen (1999)

• R. Roth, P. H. Siegel, and J.K. Wolf
(1999)

• R. Talyansky, T. Etzion, and R. Roth,
(1999)

•M. Golin, et al. (1999)

• ...
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2.3. Definition of Transfer Matrix

Let Cm (m ≥ 0) be the set of all binary
(m + 1) “row”, or “column” vectors vi.

Transfer matrix (horizontal, or verti-
cal): Let T|Cm| = (tij) be the |Cm|×|Cm|
matrix indexed by Cm such that:

tij =





1 if




vi
vj


 , or vivj satisfies S;

0 otherwise.

Example: In 2-D (1,∞) RLL constraint, all the legal

row vectors with length 2 are

v1 = 00

v2 = 01

v3 = 10

then the horizontal transfer matrix (the vertical one can be

obtained similarly) is



1 1 1

1 0 1

1 1 0




.
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2.4. ABOUT TRANSFER MA-
TRICES

• A constrained code can have different
transfer matrices for horzontal and ver-
tical directions.

• Transfer matrices usually satisfy recur-
rence relations.

• The size of transfer matrix is exponen-
tially large compared with the length
of the vetors.

• The transfer matrix can be (1) sym-
metric; or (2) non-symmetric but prim-
itive; or (3) reducible (its graph is not
strongly connected).
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2.5. Why TRANSFER MATRI-
CES?

Two Known Theorems:

(1) Let f (m,n) be the number of m×n matrices
that satisfy Shs. Then

f (m,n) = 1 t · T n
Fm+3

· 1 ,

where 1 is the vector of all 1
′
s.

(2) Let λm be largest eigenvalue of TFm+3. Then

cap(Shs) = lim
n,m→∞

log2 f (m,n)

nm

= lim
n,m→∞

log2 1 t · T n
Fm+3

· 1
nm

= lim
m→∞

1

m
lim

n→∞
log2 1 t · T n

Fm+3
· 1

n

= lim
m→∞

log2 λm

m
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2.6. BOUNDING WITH TRANSFER
MATRICES

Recall that

cap(Shs) = lim
m→∞

log2 λm

m

where λm is largest eigenvalue of TFm+3.

Without knowing all transfer matrices this does
not help directly. But, can prove, ∀m,

log2

λ2m+1

λ2m
≤ cap(Shs) ≤ log2 λm

m

(there are similar types of bounds for associated
cylindrical T.Ms).

Current technology for proving bounds on cap(Shs)
is to calculate as many λm as possible and plug
them into these equations and use best results.

This is very frustrating!
Would like to be more intelligent.
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3. EXAMPLES OF PREVIOUS WORK

(I) Capacity of Hard Square System

It seems “not difficult” to consider the capacities
of 1-D constraints. BUT no one knows how to cal-
culate closed formulas for capacities of 2-D con-
straints.

What is known is how to calculate better and
better upper and lower bounds on capacities using
transfer matrix techniques.

Shs often serves as a testbed for developing “bet-
ter” bounding techniques.

• Weber (1988): .53602 ≤ cap(Shs) ≤ .63598

• Engel (1990): .58789 ≤ cap(Shs) ≤ .59756.

• Calkin and Wilf (1998):

.587891 ≤ cap(Shs) ≤ .588339.

• Nagy and Zeger (2000):

.587891161775 ≤ cap(Shs) ≤ .587891161868.
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(II) Read/Write Isolated Memory

• A binary (0, 1) memory is read isolated
if it contains no consecutive 1’s (This
is the 1-D (1,∞) RLL); it is write iso-
lated if rewritable and no two consec-
utive positions can be changed during
rewriting.

• A read/write isolated memory is a bi-
nary rewritable storage medium obey-
ing the two different restrictions.

Example:




1 1 0 1
0 0 0 0
1 0 0 1



,




1 0 0 1
1 0 0 0
0 1 0 1



. (If

we read vertically, write horizontally,
then only the first is fine.)

• The read/write isolated medium has
two completely different transfer ma-
trices (the vertical, and the horizontal).
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Cohn’s Results

Cohn (1995) considered the Read/Write
Isolated Memory. (He did not consider
it as a 2-D code but rather as a time-
constrained code. His results are trans-
lated into our motivation)

He proved that that the ‘horizontal’ trans-
fer matrix Ak satisfies a recurrence re-
lation, and that Ak has size fk+2, the
(k + 2)th Fibonacci number.

He obtained by using the matrices that

.509... < cap(Srw) < .560...
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Figure 1: An example on 6× 10 board

(III) Nonattacking Kings Problem

Kings placed in an 2m × 2n chessboard and not
attack each other, but one king in each 2× 2 cell.
(Hard Square Shs with extra constraints.)

Let N(m,n) be the number of ways that mn
kings can be placed on a 2m × 2n chessboard.
Originally Knuth was interesed in the asymptotics
of N(m,n) for m = n.

Using transfer matrix techniques, Wilf (1995) ob-
tained that

N(m,n) = (cmn+dm)(m+1)n+O(θn
m), n → +∞.

where cm > 0, dm, 0 < θm < m + 1 are un-
known.
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4. OUR RESULTS

4.1. Overview of Our Work

• establish theoretical results (used Hard Square code as

a testbed, derived properties of transfer matrices ).

• develop techniques for calculating capacity.

The main work:

• Decomposition of transfer matrix

• Distribution of positive and negative eigenvalues of TFm+3

• Recurrence relation for inverse of TFm+3

• Derivation of order of recurrence relation (in n) for f (m,n).

(Lower than you would think)

• Another expression for f (m,n) in terms of TFm+3

• Compressing transfer matrix—-new technique for upper

bounding capacity

• Peeling off unimportant eigenvalues—-new technique for

two-sided bounding capacity

• Transfer matrix of kings problem

• The aymptotics of the number of placements

· · ·
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4.2. TRANSFER MATRIX of Shs

(Lemma 2.1.) Index Fm+3 columns in
lexicographical order. The transfer matrix
satisfies

TFm+3
=




TFm+2
T

(Fm+1)
Fm+2

∗ 0Fm+1



.

T
(Fm+1)
Fm+2

is the first Fm+1 columns of TFm+2
;

0Fm+1
a null matrix;

“∗” stands for the transpose;

The first three matrices are:

TF3 =




1 1
1 0


 , TF4 =




1 1 1
1 0 1
1 1 0



, TF5 =




1 1 1 1 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0
1 0 1 0 0




.
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4.3. THE LtDL DECOMPOSITION

(Lemma 2.2.) TFm+3 has the following LtDL
decomposition:

TFm+3 = Lt
Fm+3

DFm+3LFm+3,

where

LFm+3 =




LFm+2




LFm+1

0




0 LFm+1




, DFm+3 =




DFm+2 0

0 −DFm+1


 .

Initial conditions are

LF3 =




1 1
0 1


 , LF4 =




1 1 1
0 1 0
0 0 1



,

and

DF3 =




1 0
0 −1


 , DF4 =




1 0 0
0 −1 0
0 0 −1



.
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An Example:

TF5 =




1 1 1 1 1
1 0 1 1 0
1 1 0 1 1
1 1 1 0 0
1 0 1 0 0




=




1 0 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 0 1 0
1 1 0 1 1







1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 1







1 1 1 1 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1




=




Lt
F4

0
(Lt

F3
, 0) Lt

F3






DF4 0
0 −DF3







LF4



LF3

0




0 LF3




= Lt
F5

DF5LF5.
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4.4. EIGENVALUE DISTRIBU-
TION AND INVERSE

(Theorem 2.1.) Let Pm and Nm be the
number of positive and negative eigenval-
ues of TFm+3

. Then

Nm = Nm−1 −Nm−2 + Fm−2

with N0 = 1 and N1 = 2 and

Pm −Nm = − 2√
3

sin
mπ

3
.

(|Pm −Nm| ≤ 1)

(Corollary 2.1.) The inverse of TFm+3
is an (−1, 0, 1)− matrix satisfying

T−1
Fm+3

=






−T−1

Fm
0

0 0






T−1

Fm
0


 T−1

Fm+1

(T−1
Fm

, 0) −T−1
Fm

0

T−1
Fm+1

0 −T−1
Fm+1




.
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4.5. THE ORDER OF f (m,n)’s R.R.

(Theorem 2.2.) Would assume that, for fixed
m, f (m,n) satisfies a recurrence relation of order
Fm+3. f (m,n) actually satisfies a r.r. with order
at most





(Fm+3 + Fm+3
2

)/2, if m is odd;

(Fm+3 + Fm+6
2

)/2, if m is even.

Example: The recurrence relations for m = 1, 2, 3
have, respectively, orders 2, 4, 5 (instead of 3, 5, 8)

f (n, 1) = 2f (n− 1, 1) + f (n− 2, 1);

f (n, 2) = 2f (n− 1, 2) + 6f (n− 2, 2)− f (n− 4, 2);

f (n, 3) = 4f (n− 1, 3) + 9f (n− 2, 3)− 5f (n− 3, 3)
−4f (n− 4, 3) + f (n− 5, 3).

(Initial conditions are given by f (m,n) = f (n,m) =
1 tT n

Fm+3
1 ).
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4.6. ANOTHER EXPRESSION FOR f (m,n)

(Theorem 2.4.) Let ϕ(λ) = det(λI − TFm+3)
be the characteristic polynomial of TFm+3. Then

f (m,n) =
|λmI − T11|

ϕ′(λm)
λn+2

m +
|λj2I − T11|

ϕ′(λj2)
λn+2

j2
+ · · ·

+
|λjrmI − T11|

ϕ′(λjrm)
λn+2

jrm
,

where

rm ≤




(Fm+3 + Fm+3
2

)/2, if m is odd;

(Fm+3 + Fm+6
2

)/2, if m is even.

λm is the largest eigenvalues of TFm+3.

λj2, λj3, . . . , λjrm is a specified subset of the eigen-
values of TFm+3.

T11 is the bottom-right (Fm+3−1)× (Fm+3−1)
submatrix of TFm+3 i.e.,

TFm+3 =




1 1 t

1 T11


 ,

and
|λjI−T11|

ϕ
′
(λj)

> 0.
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4.7. New bounds on capacity of
read/write isolated memory

• Cohn (1995) proved

0.509... ≤ C ≤ 0.560297....

• Golin et al. (1999) improved to

0.53500... ≤ C ≤ 0.55209....

•We proved

0.5350150... ≤ C ≤ 0.5396225...

by introducing a new compressed ma-
trix technique.
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4.8. Upper Bounding Capacity

Let Q0(x) = 1, Q1(x) =




1 x

x x


 , and

Qm(x) =




Qm−1(x) Q̂m−2(x)

Q̂m−2(x)t Qm−2(x)


 , Q̂m−2(x) =




Qm−2(x)

0


 ,

where Qm is of size fm+2×fm+2. Then

(Lemma 3.3.) Let ρ(Qm(x)) be the
largest eigenvalue of Qm(x). Then,

∀m ≥ 1, C ≤ log2 ρ

Qm


2−C







m
,

where C is its capacity.

(Theorem 3.1.) For ∀x ∈ [0.69015866, 1)
and ∀m ≥ 1, the largest eigenvalue of
compressed matrix Qm(x) satisfies

2C ≤ (ρ(Qm(x)))
1
m < (ρ(Am))

1
m = λ1/m

m ,

where Qm(1) = Am.
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m Fm+2 ρ(Qm(x0))
log2(ρ(Qm(x0)))

m

1 2 1.5524196988 0.6345186448
2 3 2.1732673267 0.5599328234
3 5 3.2543210622 0.5674521968
4 8 4.6152889202 0.5516052411
5 13 6.8116188717 0.5535995429
6 21 9.7408000844 0.5473400461
7 34 14.2668740681 0.5477996234
8 55 20.5065208518 0.5447513549
9 89 29.9058714421 0.5447063169

10 144 43.0634915800 0.5428393393
11 233 62.7213694907 0.5428077414
12 377 90.6138568737 0.5418049818
13 610 131.2975410982 0.5412843145
14 987 190.3410264771 0.5408887676
15 1597 276.1769813000 0.5406299513
16 2584 399.7392197852 0.5401822073
17 3181 579.6907368666 0.5399493895
18 5765 839.3943441870 0.5396224962

Table 1: Fm is the mth Fibonacci number. ρ(Qm(x0)) is the largest eigenvalue
of the Fm+2 × Fm+2 compressed matrix Qm(x0).
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4.9. LOWERBOUNDING CAPACITY
C

Lemma 3.4. Let p(x) = det(xI − Ār) be the
characteristic polynomial of the 2r× 2r horizontal
transfer matrix Ār. Then

p(x) = det(xI − Ār) = x2r−1
det(xI −Mr),

where Mr is an 2r−1 × 2r−1 nonnegative matrix.
(Previous work required calculating eigenvalues

of 2r × 2r.)

Table 2 gives the numerical results of our com-
putations on the largest eigenvalues of Ār and the
bounds of the capacity. We computed the largest
eigenvalues of DMrD

−1 using Power Method and
Matlab.
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r 2r µr log2
µr

µr−1

1 2 1.618
2 4 2.302775637 0.5091622465
3 8 3.346462191 0.5392628601
4 16 4.845619214 0.5340443229
5 32 7.021562462 0.5351110622
6 64 10.17359346 0.5349653450
7 128 14.74105370 0.5350103028
8 256 21.35908135 0.5350099454
9 512 30.948359597568 0.535010307223

10 1024 44.842824649376 0.535014214230
11 2048 64.975322373528 0.535014730251
12 4096 94.146459043118 0.535014947823
13 8192 136.414197132806 0.535015053352
14 16384 197.658348650048 0.535015093868

Table 2: µr is the largest eigenvalue of the 2r × 2r transfer matrix Ār. For r > 8
the µr were calculated by calculating the largest eigenvalues of DMrD

−1.

Plugging the values in Table 2 into the inequalities on

page 5 derives our new lower bound 0.5350150 ≤ C.
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4.10. NONATTACKING KINGS PROB-
LEM

Its transfer matrix is reducible (neither
symmetric, nor primitive, nor irreducible).

The current techniques can not be
applied to this problem.

By proving that its matrix Λm is per-
symmetric, i.e,

(Λm)i,j = (Λm)n−j+1,n−i+1,

we obtained the constants cm > 0, dm,
θm in Wilf’s formula

N(m,n) = (cmn+dm)(m+1)n+O(θn
m),

This permits, for example, showing that
capacity

cap(S) = lim
n,m→∞

log2 N(m,n; S)

nm
= 0.
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4.11. Transfer matrix of kings problem

The first two matrices are given by.




1 1 1 1

1 1 1 1

0 0 1 1

0 0 1 1




,




1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 0 0 0 0 1 1 1

0 0 0 1 1 1 0 0 0 1 1 1

0 0 0 1 1 1 0 0 0 1 1 1

0 0 0 0 0 0 1 1 0 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 0 1 1 1




.

Generally, it has size (m + 1)2m.
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REWIEW —- OVERVIEW OF THE WORK

• establish theoretical results (use Hard Square
code as a testbed), then apply them to the
analyses and computations.

• develop techniques for calculating capacity that
reduces the complexity of computations so as
to tighten the bounds.

The main work:

• Decomposition of transfer matrix

• Distribution of positive and negative eigenval-
ues of TFm+3

• Recurrence relation for inverse of TFm+3

• Derivation of order of recurrence relation (in
n) for f (m,n). Lower than you would think

• Another expression for f (m,n) in terms of TFm+3

• Compressing transfer matrix—-new technique
for upper bounding capacity

• Peeling off unimportant eigenvalues—-new tech-
nique for two-sided bounding capacity

• Transfer matrix of kings problem
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• The asymptotics of the number of placements

• · · ·

35



5. POSSIBLE EXTENSIONS

• Apply the techniques to other prob-
lems, e.g., Eulerian orientations on a
grid torus

• A Conjecture posed by Engel (1990) for
hard square system:

log2(
λ2m

λ2m−1
) ≥ cap(S). (1)

This conjecture seems also true for other
constraints from numerical results, (e.g.,
for Read/Write constraints.)

If it is true, it would dramatically im-
prove all known results.
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