The Channel Capacity of One and Two-Dimensional Constrained Codes

Xuerong Yong Department of Computer Science Hong Kong UST

OUTLINE

- 1. Introduction
- 2. Capacity and Its Properties
- 3. Examples of Previous Work
- 4. Our Results
- 5. Possible Extensions

1. INTRODUCTION

- Capacity is an upper bound on the rate at which data can be transmitted over a channel or stored in a data medium.
- Shannon (1948) states that reliable transmision is only possible when we transmit information at a rate below its capacity.
- Already much work on 1-D capacity.
- 2-D problem in its infancy and currently very active (Only techniques for bounding).
- Our Work: (1) *theoretical results* for 2-D problems; (2) techniques for better bounding capacities. (The *ideas* and techniques are not confined to specific 2-D codes.)

1.1. DATA STORAGE DEVICES —- Applications

Different data storage devices have different constraints on the ways that data can be coded.

Examples of such devices:

- Conventional diskette and hard diskette drivers;
- Optical read-only drivers such as CD, CD-ROM drivers;
- Magnetic tape drivers, digital audio tape systems;
- Digital compact cassette audio tape systems.

... \vdots

1.2. CODES FOR RECORDING

A (d,k) -Runlength Limited (RLL) code is a set of codewords over $\{0, 1\}$ all satisfying:

 $d(k)$ is the minimum (maximum) number of 0's separating consecutive 1's.

Example: $((1,7)$ -RLL constrints) $...10001000010100000001...;$ (*YES*)

A 2-D RLL code is a set of binary arrays, each satisfying both horizontal and vertical (possibly different) RLL constraints.

Example: The 2-D $(1, \infty)$ -RLL code

The first matrix is a good codeword, while the second one isn't.

1.3. SOME RECORDING STAN-DARDS

- Many commercial systems use the code with constraint $(d, k) = (1, 7)$.
- Magnetic disc drivers use the $(1, 3)$ -RLL constraint;
- Compact audio discs use the $(2, 10)$ -RLL constraint;
- 2-D codes are used in page oriented storage system, e.g. holographic recording, BUT mostly studied though for theoretical interests.

1.4. CONSTRAINED MATRICES

A constrained matrix is a binary array that does not contain specified forbidden submatrices. 2-D codes are sets of constrained matrices.

An example:

A 2-D $(1, \infty)$ - RLL codeword is a constrained matrix that does not contain:

 $(1, 1)$ or $\binom{1}{1}$

Studied constraints include

- Read/Write isolated memory
- *general RLL restricted* matrices
- *Checkerboard-Code* matrices
- other pure combinatorial constraints, e.g., kings placement on chessboard

The 2-D RLL Constrained code S (2) $1,\infty$ also arises in statistical physics and graph theory. Previously studied separately on those areas.

- Burton and Steif (1994) called *hard*square, or hard-core lattice gas system
- Engel (1982) called it Fibonacci number of a lattice,
- Calkin and Wilf (1998) called it independent sets in grid graph. Denoted the constraint by S_{hs} .

2.1. Definition of Capacity (1-D)

Combinatorial description: The capacity $cap(S)$ measures the growth rate of the number of sequences of size $n, N(n; S)$ in S.

$$
cap(S) = \lim_{n \to \infty} \frac{\log_2 N(n;S)}{n}.
$$

NOTE: Equivalent Algebraic and Probabilistic definitions exist, but we don't need them here.

Example: Consider the $(0, 1)$ -RLL code. It is easy to see that we have

$$
N(n;S) = N(n-1;S) + N(n-2;S) \approx c((1+\sqrt{5})/2)^n,
$$

the Fibonacci number. Therefore,

$$
cap(S) = \log_2(1 + \sqrt{5})/2 = .694...
$$

Intuitively, this means that, when storing data, using this code each physical bit can, in the asymptotic sense, store at most .694... 'bits of information'.

2.2. DEFINITION OF CAPAC-ITY (2-D)

Now let $N(m, n; S)$ be number of $m \times n$ arrays that satisfy constraint S.

The Capacity, $cap(S)$, of S measures the growth rate of $N(m, n; S)$:

$$
cap(S) = \lim_{n,m \to \infty} \frac{\log_2 N(m,n;S)}{nm}
$$

.

Intuition: $cap(S)$ is the asymptotically maximum amount of information that can be transmitted or stored per bit of the matrix.

Note: 2-D Capacity "usually" exists independent of double-limits order. Kato and Zeger (1999).

Following is a list of recent work on bounding the 2-D capacity and other properties of such matrices. (Previous work of thesis work is described later.)

- K. Engel (1990)
- N. Calkin and H. Wilf (1998)
- W. Weeks and R. Blahut (1998)
- Z. Nagy and K. Zeger (1998)
- A. Kato and K. Zeger (1999)
- S. Forchhammer and J. Justesen (1999)
- R. Roth, P. H. Siegel, and J.K. Wolf (1999)
- R. Talyansky, T. Etzion, and R. Roth, (1999)
- M. Golin, et al. (1999)
- \bullet ...

2.3. Definition of Transfer Matrix

Let C_m $(m \geq 0)$ be the set of all binary $(m + 1)$ "row", or "column" vectors v_i .

Transfer matrix (horizontal, or vertical): Let $T_{|C_m|} = (t_{ij})$ be the $|C_m| \times |C_m|$ matrix indexed by C_m such that:

$$
t_{ij} = \begin{cases} 1 & \text{if } \begin{pmatrix} v_i \\ v_j \end{pmatrix}, \text{or } v_i v_j \text{ satisfies } S; \\ 0 & \text{otherwise.} \end{cases}
$$

Example: In 2-D $(1, \infty)$ RLL constraint, all the legal row vectors with length 2 are

$$
v_1 = 00
$$

$$
v_2 = 01
$$

$$
v_3 = 10
$$

then the horizontal transfer matrix (the vertical one can be obtained similarly) is

$$
\left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right).
$$

2.4. ABOUT TRANSFER MA-**TRICES**

- A constrained code can have *different* transfer matrices for horzontal and vertical directions.
- Transfer matrices usually satisfy recurrence relations.
- The size of transfer matrix is exponentially large compared with the length of the vetors.
- The transfer matrix can be (1) symmetric; or (2) non-symmetric but primitive; or (3) reducible (its graph is not strongly connected).

2.5. Why TRANSFER MATRI-CES?

Two Known Theorems:

(1) Let $f(m, n)$ be the number of $m \times n$ matrices that satisfy S_{hs} . Then

$$
f(m,n) = 1^t \cdot T_{F_{m+3}}^n \cdot 1,
$$

where 1 is the vector of all $1's$.

(2) Let λ_m be largest eigenvalue of $T_{F_{m+3}}$. Then

$$
cap(S_{hs}) = \lim_{n,m \to \infty} \frac{\log_2 f(m,n)}{nm}
$$

=
$$
\lim_{n,m \to \infty} \frac{\log_2 1^t \cdot T_{F_{m+3}}^n \cdot 1}{nm}
$$

=
$$
\lim_{m \to \infty} \frac{1}{m} \lim_{n \to \infty} \frac{\log_2 1^t \cdot T_{F_{m+3}}^n \cdot 1}{n}
$$

=
$$
\lim_{m \to \infty} \frac{\log_2 \lambda_m}{m}
$$

2.6. BOUNDING WITH TRANSFER MATRICES

Recall that

$$
cap(S_{hs}) = \lim_{m \to \infty} \frac{\log_2 \lambda_m}{m}
$$

where λ_m is largest eigenvalue of $T_{F_{m+3}}$.

Without knowing all transfer matrices this does not help directly. But, can prove, $\forall m$,

$$
\log_2 \frac{\lambda_{2m+1}}{\lambda_{2m}} \leq cap(S_{hs}) \leq \frac{\log_2 \lambda_m}{m}
$$

(there are similar types of bounds for associated cylindrical T.Ms).

Current technology for proving bounds on $cap(S_{hs})$ is to calculate as many λ_m as possible and plug them into these equations and use best results.

This is very frustrating! Would like to be more intelligent.

3. EXAMPLES OF PREVIOUS WORK

(I) Capacity of Hard Square System

It seems "not difficult" to consider the capacities of 1-D constraints. BUT no one knows how to calculate closed formulas for capacities of 2-D constraints.

What is known is how to calculate better and better upper and lower bounds on capacities using transfer matrix techniques.

 S_{hs} often serves as a testbed for developing "better" bounding techniques.

- Weber (1988): .53602 $\leq cap(S_{hs}) \leq .63598$
- Engel (1990): .58789 $\leq cap(S_{hs}) \leq .59756$.
- Calkin and Wilf (1998): $.587891 \leq cap(S_{hs}) \leq .588339.$
- Nagy and Zeger (2000): $.587891161775 \leq cap(S_{hs}) \leq .587891161868.$

(II) Read/Write Isolated Memory

- A binary $(0, 1)$ memory is *read isolated* if it contains no consecutive 1's (This is the 1-D $(1, \infty)$ RLL); it is *write iso*lated if rewritable and no two consecutive positions can be changed during rewriting.
- A read/write isolated memory is a binary rewritable storage medium obeying the two different restrictions.

Example: $\overline{}$ $\begin{array}{c} \hline \end{array}$ 1 1 0 1 0 0 0 0 1 0 0 1 \mathbf{r} , $\overline{}$ $\begin{array}{c} \hline \end{array}$ 1 0 0 1 1 0 0 0 0 1 0 1 \mathbf{r} . (If we read vertically, write horizontally, then only the first is fine.)

• The read/write isolated medium has two completely different transfer matrices (the vertical, and the horizontal).

Cohn's Results

Cohn (1995) considered the Read/Write Isolated Memory. (He did not consider it as a 2-D code but rather as a timeconstrained code. His results are translated into our motivation)

He proved that that the 'horizontal' transfer matrix A_k satisfies a recurrence relation, and that A_k has size f_{k+2} , the $(k+2)$ th Fibonacci number.

He obtained by using the matrices that $.509... < cap(S_{rw}) < .560...$

Figure 1: An example on 6×10 board

(III) Nonattacking Kings Problem

Kings placed in an $2m \times 2n$ chessboard and not attack each other, but one king in each 2×2 cell. (Hard Square S_{hs} with extra constraints.)

Let $N(m, n)$ be the number of ways that mn kings can be placed on a $2m \times 2n$ chessboard. Originally Knuth was interesed in the asymptotics of $N(m, n)$ for $m = n$.

Using transfer matrix techniques, Wilf (1995) obtained that

 $N(m, n) = (c_m n + d_m)(m+1)^n + O(\theta_m^n), n \to +\infty.$ where $c_m > 0$, d_m , $0 < \theta_m < m + 1$ are **un**known.

4. OUR RESULTS

4.1. Overview of Our Work

- establish *theoretical results* (used Hard Square code as a testbed, derived properties of transfer matrices).
- develop techniques for calculating capacity.

The main work:

- Decomposition of transfer matrix
- Distribution of positive and negative eigenvalues of $T_{F_{m+3}}$
- Recurrence relation for inverse of $T_{F_{m+3}}$
- Derivation of order of recurrence relation (in n) for $f(m, n)$. (Lower than you would think)
- Another expression for $f(m, n)$ in terms of $T_{F_{m+3}}$
- Compressing transfer matrix—-new technique for upper bounding capacity
- Peeling off unimportant eigenvalues—-new technique for two-sided bounding capacity
- Transfer matrix of kings problem
- The aymptotics of the number of placements
	- · · ·

4.2. TRANSFER MATRIX of S_{hs}

(Lemma 2.1.) Index F_{m+3} columns in lexicographical order. The transfer matrix satisfies

$$
T_{F_{m+3}} = \begin{pmatrix} T_{F_{m+2}} & T_{F_{m+2}}^{(F_{m+1})} \\ * & 0_{F_{m+1}} \end{pmatrix}.
$$

 \overline{T} (F_{m+1}) $F_{m+2}^{(Tm+1)}$ is the first F_{m+1} columns of $T_{F_{m+2}};$ $0_{F_{m+1}}$ a null matrix;

"∗" stands for the transpose;

The first three matrices are:

$$
T_{F_3} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, T_{F_4} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, T_{F_5} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}.
$$

4.3. THE L^tDL DECOMPOSITION

(Lemma 2.2.) $T_{F_{m+3}}$ has the following L^tDL decomposition:

$$
T_{F_{m+3}} = L_{F_{m+3}}^t D_{F_{m+3}} L_{F_{m+3}},
$$

where

$$
L_{F_{m+3}} = \begin{pmatrix} L_{F_{m+2}} & \begin{pmatrix} L_{F_{m+1}} \\ 0 \end{pmatrix} \end{pmatrix}, \quad D_{F_{m+3}} = \begin{pmatrix} D_{F_{m+2}} & 0 \\ 0 & -D_{F_{m+1}} \end{pmatrix}.
$$

Initial conditions are

$$
L_{F_3} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad L_{F_4} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix},
$$

and

$$
D_{F_3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad D_{F_4} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}.
$$

An Example:

$$
T_{F_5} = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{pmatrix}
$$

=
$$
\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}
$$

=
$$
\begin{pmatrix} L_{F_4}^t & 0 \\ (L_{F_3}^t, 0) & L_{F_3}^t \end{pmatrix} \begin{pmatrix} D_{F_4} & 0 \\ 0 & -D_{F_3} \end{pmatrix} \begin{pmatrix} L_{F_4} & L_{F_3} \\ 0 & L_{F_3} \end{pmatrix}
$$

 $= L_{F_5}^t D_{F_5} L_{F_5}.$

4.4. EIGENVALUE DISTRIBU-TION AND INVERSE

(**Theorem 2.1.**) Let P_m and N_m be the number of positive and negative eigenvalues of $T_{F_{m+3}}$. Then

$$
N_m = N_{m-1} - N_{m-2} + F_{m-2}
$$

with $N_0 = 1$ and $N_1 = 2$ and

$$
P_m - N_m = -\frac{2}{\sqrt{3}} \sin \frac{m\pi}{3}.
$$

(|P_m - N_m| \le 1)

(Corollary 2.1.) The inverse of $T_{F_{m+3}}$ is an $(-1, 0, 1)$ – matrix satisfying

$$
T_{F_{m+3}}^{-1} = \begin{pmatrix} \begin{pmatrix} -T_{F_m}^{-1} & 0 \\ 0 & 0 \end{pmatrix} & \begin{pmatrix} T_{F_m}^{-1} \\ 0 \end{pmatrix} & T_{F_{m+1}}^{-1} \\ \begin{pmatrix} T_{F_m}^{-1} & 0 \\ T_{F_{m+1}}^{-1} & 0 \end{pmatrix} & -T_{F_{m+1}}^{-1} \end{pmatrix}
$$

.

4.5. THE ORDER OF $f(m, n)$'s R.R.

(Theorem 2.2.) Would assume that, for fixed $m, f(m, n)$ satisfies a recurrence relation of order F_{m+3} . $f(m, n)$ actually satisfies a r.r. with order at most

$$
\left(\frac{(F_{m+3} + F_{\frac{m+3}{2}})}{(F_{m+3} + F_{\frac{m+6}{2}})} \right)
$$
, if *m* is odd;
if *m* is even.

Example: The recurrence relations for $m = 1, 2, 3$ have, respectively, orders $2, 4, 5$ (instead of $3, 5, 8$)

$$
f(n,1)=2f(n-1,1)+f(n-2,1);\\
$$

$$
f(n, 2) = 2f(n - 1, 2) + 6f(n - 2, 2) - f(n - 4, 2);
$$

$$
f(n,3) = 4f(n-1,3) + 9f(n-2,3) - 5f(n-3,3)
$$

-4f(n-4,3) + f(n-5,3).

(Initial conditions are given by $f(m, n) = f(n, m) =$ $1\,{}^tT_{F_{m+3}}^n1$).

4.6. ANOTHER EXPRESSION FOR $f(m, n)$

(Theorem 2.4.) Let $\varphi(\lambda) = det(\lambda I - T_{F_{m+3}})$ be the characteristic polynomial of $T_{F_{m+3}}$. Then

$$
f(m,n) = \frac{|\lambda_m I - T_{11}|}{\varphi'(\lambda_m)} \lambda_m^{n+2} + \frac{|\lambda_{j_2} I - T_{11}|}{\varphi'(\lambda_{j_2})} \lambda_{j_2}^{n+2} + \cdots
$$

+
$$
\frac{|\lambda_{j_{rm}} I - T_{11}|}{\varphi'(\lambda_{j_{rm}})} \lambda_{j_{rm}}^{n+2},
$$

where

$$
r_m \le \begin{cases} (F_{m+3} + F_{\frac{m+3}{2}})/2, & \text{if } m \text{ is odd;}\\ (F_{m+3} + F_{\frac{m+6}{2}})/2, & \text{if } m \text{ is even.} \end{cases}
$$

 λ_m is the largest eigenvalues of $T_{F_{m+3}}$.

 $\lambda_{j_2}, \lambda_{j_3}, \ldots, \lambda_{j_{r_m}}$ is a specified subset of the eigenvalues of $T_{F_{m+3}}$.

 T_{11} is the bottom-right $(F_{m+3}-1) \times (F_{m+3}-1)$ submatrix of $T_{F_{m+3}}$ i.e.,

$$
T_{F_{m+3}} = \left(\begin{array}{cc} 1 & 1^t \\ 1 & T_{11} \end{array}\right),
$$

and $\frac{|\lambda_j I-T_{11}|}{I(\lambda_j)}$ $\overline{\varphi'(\lambda_j)}$ $> 0.$

4.7. New bounds on capacity of read/write isolated memory

• Cohn (1995) proved $0.509... \leq C \leq 0.560297...$

• Golin et al. (1999) improved to

 $0.53500... \leq C \leq 0.55209...$

• We proved

 $0.5350150... \leq C \leq 0.5396225...$

by introducing a new compressed matrix technique.

4.8. Upper Bounding Capacity

Let $Q_0(x) = 1$, $Q_1(x) =$ $\overline{}$ $\overline{ }$ 1 x $\begin{array}{cc} x & x \end{array}$ \mathbf{r} , and $\overline{}$ \mathbf{r}

$$
Q_m(x) = \begin{pmatrix} Q_{m-1}(x) & \hat{Q}_{m-2}(x) \\ \hat{Q}_{m-2}(x)^t & Q_{m-2}(x) \end{pmatrix}, \ \hat{Q}_{m-2}(x) = \begin{pmatrix} Q_{m-2}(x) \\ 0 \end{pmatrix},
$$

where Q_m is of size $f_{m+2} \times f_{m+2}$. Then

(Lemma 3.3.) Let $\rho(Q_m(x))$ be the largest eigenvalue of $Q_m(x)$. Then,

$$
\forall m \ge 1, \quad C \le \frac{\log_2 \rho \left(Q_m \left(2^{-C} \right) \right)}{m},
$$

where C is its capacity.

(**Theorem 3.1.**) For $\forall x \in [0.69015866, 1)$ and $\forall m \geq 1$, the largest eigenvalue of compressed matrix $Q_m(x)$ satisfies

$$
2^{C} \le (\rho(Q_{m}(x)))^{\frac{1}{m}} < (\rho(A_{m}))^{\frac{1}{m}} = \lambda_{m}^{1/m},
$$

where $Q_{m}(1) = A_{m}$.

m	F_{m+2}	$\rho(Q_m(x_0))$	$\log_2(\rho(Q_m(x_0)))$
$\mathbf 1$	$\overline{2}$	1.5524196988	0.6345186448
$\overline{2}$	3	2.1732673267	0.5599328234
3	5	3.2543210622	0.5674521968
4	8	4.6152889202	0.5516052411
5	13	6.8116188717	0.5535995429
6	21	9.7408000844	0.5473400461
7	34	14.2668740681	0.5477996234
8	55	20.5065208518	0.5447513549
9	89	29.9058714421	0.5447063169
10	144	43.0634915800	0.5428393393
11	233	62.7213694907	0.5428077414
12	377	90.6138568737	0.5418049818
13	610	131.2975410982	0.5412843145
14	987	190.3410264771	0.5408887676
15	1597	276.1769813000	0.5406299513
16	2584	399.7392197852	0.5401822073
17	3181	579.6907368666	0.5399493895
18	5765	839.3943441870	0.5396224962

Table 1: F_m is the mth Fibonacci number. $\rho(Q_m(x_0))$ is the largest eigenvalue of the $F_{m+2} \times F_{m+2}$ compressed matrix $Q_m(x_0)$.

4.9. LOWERBOUNDING CAPACITY C

Lemma 3.4. Let $p(x) = det(xI - \overline{A}_r)$ be the characteristic polynomial of the $2^r \times 2^r$ horizontal transfer matrix \overline{A}_r . Then

$$
p(x) = det(xI - \bar{A}_r) = x^{2^{r-1}} det(xI - M_r),
$$

where M_r is an $2^{r-1} \times 2^{r-1}$ nonnegative matrix.

(Previous work required calculating eigenvalues of $2^r \times 2^r$.)

Table 2 gives the numerical results of our computations on the largest eigenvalues of \overline{A}_r and the bounds of the capacity. We computed the largest eigenvalues of $DM_rD⁻¹$ using *Power Method* and Matlab.

\mathcal{r}	2^r	μ_r	\log_2
1	$\overline{2}$	1.618	
$\overline{2}$	4	2.302775637	0.5091622465
3	8	3.346462191	0.5392628601
4	16	4.845619214	0.5340443229
5	32	7.021562462	0.5351110622
6	64	10.17359346	0.5349653450
7	128	14.74105370	0.5350103028
8	256	21.35908135	0.5350099454
9	512	30.948359597568	0.535010307223
10	1024	44.842824649376	0.535014214230
11	2048	64.975322373528	0.535014730251
12	4096	94.146459043118	0.535014947823
13	8192	136.414197132806	0.535015053352
14	16384	197.658348650048	0.535015093868

Table 2: μ_r is the largest eigenvalue of the $2^r \times 2^r$ transfer matrix \overline{A}_r . For $r > 8$ the μ_r were calculated by calculating the largest eigenvalues of DM_rD^{-1} .

Plugging the values in Table 2 into the inequalities on page 5 derives our new lower bound $0.5350150 \leq C$.

4.10. NONATTACKING KINGS PROB-LEM

Its transfer matrix is reducible (neither symmetric, nor primitive, nor irreducible).

The current techniques can not be applied to this problem.

By proving that its matrix Λ_m is persymmetric, i.e,

$$
(\Lambda_m)_{i,j} = (\Lambda_m)_{n-j+1,n-i+1},
$$

we obtained the constants $c_m > 0$, d_m , θ_m in Wilf's formula

$$
N(m,n) = (c_m n + d_m)(m+1)^n + O(\theta_m^n),
$$

This permits, for example, showing that capacity

$$
cap(S) = \lim_{n,m \to \infty} \frac{\log_2 N(m,n;S)}{nm} = 0.
$$

4.11. Transfer matrix of kings problem

The first two matrices are given by.

$$
\begin{pmatrix}\n1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1\n\end{pmatrix}
$$

.

Generally, it has size $(m + 1)2^m$.

REWIEW —- OVERVIEW OF THE WORK

- establish *theoretical results* (use Hard Square code as a testbed), then apply them to the analyses and computations.
- develop *techniques* for calculating capacity that reduces the complexity of computations so as to tighten the bounds.

The main work:

- Decomposition of transfer matrix
- Distribution of positive and negative eigenvalues of $T_{F_{m+3}}$
- Recurrence relation for inverse of $T_{F_{m+3}}$
- Derivation of order of recurrence relation (in n) for $f(m, n)$. Lower than you would think
- Another expression for $f(m, n)$ in terms of $T_{F_{m+3}}$
- Compressing transfer matrix—-new technique for upper bounding capacity
- Peeling off unimportant eigenvalues—new technique for two-sided bounding capacity
- Transfer matrix of kings problem

 \bullet The asymptotics of the number of placements

• · · ·

5. POSSIBLE EXTENSIONS

- Apply the techniques to other problems, e.g., Eulerian orientations on a grid torus
- A Conjecture posed by Engel (1990) for hard square system:

$$
\log_2(\frac{\lambda_{2m}}{\lambda_{2m-1}}) \ge cap(S). \tag{1}
$$

This conjecture seems also true for other constraints from numerical results, (e.g., for Read/Write constraints.)

If it is true, it would dramatically improve all known results.