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1 Introduction

The codes here are the ones used in magnetic, digital or
optical recordings.

o A (d,k)-Runlength Limited (RLL) constrained code
is the set of codewords over binary alphabet {0, 1}
all satisfying the constraints that the number d (k)
is the minimum (maximum) permitted number of 0’s
separating consecutive 1’s in a legal binary sequence.
For example,

1001000100000100000000001000

is a word that satisfies the (2,10)-RLL constraint
used in compact audio discs.

e A 2-D code has constraints both horizontally and
vertically. The two constraints may be different.

The read/write isolated constraint is an example.
(constraints in reading no two consecutive 1’s and
in each rewriting cycle, no two consecutive positions
are allowed to change.)



2 2-D (d,k)-RLL constraint

The 2-D (d, k)-RLL code Sff,i satisfies the RLL con-
straint both horizontally and vertically.

For example (if we read in y direction and write in x

direction):
10010 10010
01000 10000
10110} 01010
00001 0000O01

The first matrix is fine, but the second is not permit-

ted.



3 The Capacity

e The capacity cap(S) measures the growth rate of
the number N(m,n;S) of m x n arrays in S, i.e.,
the number of m x n (0, 1)-matrices that satisty the
constraints in two directions,

cap(S) = lim log, N(m, n; 5)

n,m-—00 nm ’

intuitively, it represents the maximum amount of im-
formation that is transmitted or stored per bit in
communication.



4 The history

The 2-D RLL Constrained code Sﬁzo also arises in statis-
tical physics, graph theory of coding theory, until recently
it was attached separatingly by different fields.

e also called hard-square, or hard-core lattice gas sys-
tem (Burton and Steif, 1994)

e Engel (1982) called it Fibonacci number of a lattice,

e Calkin and Wilf (1998) called it independent sets in
grid graph. Denote it simply by Sps.

e Combinatorically, it contains all matrices of size m x
n that do not have adjacent horizontal or vertical ‘1’s.



5 Previous results

As far as we know in estimating the Shannon capacity,
there has been no one who has paid much attention to
the algebraic and combinatorial properties of the transfer
matrix for a constrained code.

For the Hard Square code, Weber seems to be the first
to consider its capacity. Weber (1988, [6]) obtained

53602 < cap(Sys) < 63598,
and then Engel (1990, [2])
58789 < cap(Sys) < 59756,
and then Calkin and Wilf (1998,[5]) proved that
587891 < cap(Sys) < .588339.

Now they have been further improved by Nagy and Zeger
[14] to be

H8TRIT161775 < cap(Shs) < .587891161868.



6 The objective of this talk

Focuses on deriving the properties of transfer matrix of
the Hard Square system Sps. Similar properties of the
other constrained codes can be obtained using the tech-
niques and ideas.

e We derive some algebraic and combinatorial proper-
ties of the transfer matrix of the Hard Square system

Shs-



7 Transfer matrix

Let C), (m > 0) be the set of all column(m + 1)-vectors
v; of 0's and 1/3, such that v contains no two consecutive
1's.

Let Tr, ., = (ti;) where t; def v;0; 1s 1 if the concate-
nation v;v; satisfies the constraints and is 0 otherwise.
Then TF, ., is called the transfer matrix of the prob-
lem.

The number of m x n matrices f(m,n) that satisfy
the constriants is given by

f(m)n):]tT]? 'Za

m—+3

where 1 is the vector of alll’s.



8 The capacity and the transfer matrix

cap(Sps) =  lim logy f(m, n)

n,mM—00 nm

logy 1° - TH

m+3

1

and

Aom
cap(Shs) > log, )2\ H,

2m

where A, is the largest eigenvalue of T, . ..



9 Characterizations of transfer matrix

We can easily find its transfer matrices.

Lemma 1. If we arrange the (m + 1)(0,1)-sequences in
lexicographcal order, then the transfer matrix is given by

Fm—|—2

Tr . =
m—+3 % OFm+1

CZ"Fer2 T(Fm+1)>

where TE™+) is the first Fy41 columns of Tp

Fm+<2 | Ly, 1€
Foit .

trix, the “x” signifies the transpose part.

The first three matrices:

11111
. 111 10110
TF3_(1O),TF4— 101 |, Tp=|11011
110 11100

10100

10



10 The L'DL decomposition

Lemma 3. The transfer matrix T ., has the following
L'DL decomposition:

7t
TFm+3 T LFm+3DFm+3 LFm—i—?)’

where
Lr 1
L m+1 1 1
LFm+3 - Hores ( 0 ) 7LF3 - ( 0 1 ) 7LF4 =10
0 Lp., 0
_ DFm+2 0 _ 10 _
DFm+3_( 0 _DFm—H)aDF?)_(O _1)7DF4_

11



11  The distributions of its eigenvalues

Theorem 1. Let P,, and IV, be the numbers of positive
and negative eigenvalues of Tp .. Then

2 mm
P,— N, =——sin :
V33

where N,, = N,,_1 — N,,_o + F,,_o with Ny = 1 and
Ny = 2.

12



12 The inverse of the matrix

Corollary 1. Theinverse of Tp, ,,isan (=1, 0, 1)—matrix
(the elements are —1,0,1) , and is given recursively by

Ty, 0 (Tp, 1

m m T
el ( 0 0) ( 0 Fin+1
Py = (T, 00 =Tgy 0

—1 —1
TFm+1 0 TFm—H

13



13 The power of the matrix

Lemma 4. The transfer matrix T, . satisfies the fol-
lowing relations: Y}’fiw?)PFm+3 = PFm+3T]]§m+3, k==+1,42,---

where Pr ., is a symmetric permutation matrix of size

+3
Fm—|-3-

o 2 _ 42 _ _
This gives T' oy = A Fonis: where A .. =TF, . Pr, ., =
PFm+3TFm+3'

Corollary 3. If \; and p; are the eigenvalues of transfer

matrix Tx ., and matrix Ag ., respectively, then we

+3 +3

have
’)\2| - |/’L@| (Z — 1727 T 7Fm—|—3)- S0 TFerg and AFerg
share the same largest eigenvalue. Furthermore,

flm,n)=1"T  1=1"A% 1

m+3" "

14



14 The general properties

Similar relations hold for other constraints. Even if the
corresponding transfer matrix, say T', is not symmetric,
then we have the per-symmetric property:

T"P = P(TY* k=0,1,2,---.

where the P is a symmetric permutation matrix. Note
that the graph of P is of loops plus cycles of order 2.

15



15 The order of the recursive relation that
f(m,n) satisfies

f(m,n) satisfies a recursive relation with order

(Frnts + Fme)/Q, if mis odd;
(Fris + FmTH;)/Q, if m is even.

Example 3. Following are the first three recursive re-
lations for f(n,m) = 1'"T# 1 (for m = 1,2,3). Their
recurrence relations have orders 2,4, 5, respectively.

f(nvl):2f(n_171)+f(n_271>5

f(n,2)=2f(n—1,2)+6f(n—2,2) — f(n—4,2);

f(n,3)=4f(n—1,3)+9f(n—2,3) —5f(n —3,3)
—4f(n—4,3)+ f(n —5,3).

Their initial conditions are given by f(m,n) = f(n,m) =
"7y 1, for example, f(1,1) =7, f(2,1) = 17, and so
on.

16



16 The analytic expression of f(m,n)

Theorem 3. Let () = det(Al — T) be the charac-
teristic polynomial of T'. Then

B | A d — T11|
flm,n) = Spl(Am)

Ao L = T y o
o' (N,,) T
where 11 is the bottom-right (Fj,,453 — 1) X (Fp13 — 1)

1 1!
[T ) , and all

Ajod = Tl ynya

A2 T
0 (N,

_|_

principal submatrix of T, i.e., T' = (

|\ I=T11|

700 > 0.

coeflients

17



17 Numerical computations

>‘m+1

A
1.4920660376475357643782160628584

1.5041673682066925408320381142165
1.5029282260930080313112631785226
1.5030600955153464778914585820045
1.5030467676434921566255567236369
1.5030482087273507836965767 785786
1.5030480675735632786709176203759
1.50304808371067 7509771348423 7842
1.5030480822893138617353323026629
1.5030480824838507827311370714394
1.5030480824 72363613551 7003809521
1.5030480824752323465499639032462
13 | 1.5030480824752615741231348797605

From the table,

QOOO\]OB@%OO[\DHS

—_ = =
N — O

cap(Sps) > log, 1.5030480824752323465499639032462
= 0.587891161775232....

We computed them using the recursive relations in Lemma
1 and the Power Method. The corresponding two matri-
ces are of sizes 377,610, respectively.

18



18 Conclusion and Conjecture

We considered some algebraic and combinatorial proper-
ties of the transfer matrix of the Hard Square system.
Some similar results can be obtained by making use of
the approaches.

We would like to pose the following Conjecture. It
seems true for the transfer matrices of the Read/Write

Isolated memory ([23], [24]) and the Hard Square sys-
tem.

Conjecture. If the transfer matrix 71" of a constrained

system is symmetric, and if X is an eigenvalue of T, and A
1

Y 18 also an eigenvalue

is not 0 or —1, then the number —

of T

19



19 The case of Hard Square system

In the case of the Hard Square system, T' is invertible.
[f the conjecture is true, then we can prove easily that

1t —2n ¢ 1t p—(2n+2) 4

{tT—(2n-2) { < {tT—2n{ < A
where A, is the largest eigenvalue of T'. This would give
a very good upper bound of its capacity:.

20
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