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1 Introduction

The codes here are the ones used in magnetic, digital or

optical recordings.

• A (d,k)-Runlength Limited (RLL) constrained code

is the set of codewords over binary alphabet {0, 1}
all satisfying the constraints that the number d (k)

is the minimum (maximum) permitted number of 0’s

separating consecutive 1’s in a legal binary sequence.

For example,

1001000100000100000000001000

is a word that satisfies the (2,10)-RLL constraint

used in compact audio discs.

• A 2-D code has constraints both horizontally and

vertically. The two constraints may be different.

The read/write isolated constraint is an example.

(constraints in reading no two consecutive 1’s and

in each rewriting cycle, no two consecutive positions

are allowed to change.)
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2 2-D (d,k)-RLL constraint

The 2-D (d, k)-RLL code S
(2)
d,k satisfies the RLL con-

straint both horizontally and vertically.

For example (if we read in y direction and write in x

direction):




1 0 0 1 0

0 1 0 0 0

1 0 1 1 0

0 0 0 0 1




,




1 0 0 1 0

1 0 0 0 0

0 1 0 1 0

0 0 0 0 1




.

The first matrix is fine, but the second is not permit-

ted.
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3 The Capacity

• The capacity cap(S) measures the growth rate of

the number N(m,n; S) of m × n arrays in S, i.e.,

the number of m× n (0, 1)-matrices that satisfy the

constraints in two directions,

cap(S) = lim
n,m→∞

log2 N(m,n; S)

nm
,

intuitively, it represents the maximum amount of im-

formation that is transmitted or stored per bit in

communication.
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4 The history

The 2-D RLL Constrained code S
(2)
1,∞ also arises in statis-

tical physics, graph theory of coding theory, until recently

it was attached separatingly by different fields.

• also called hard-square, or hard-core lattice gas sys-

tem (Burton and Steif, 1994)

• Engel (1982) called it Fibonacci number of a lattice,

• Calkin and Wilf (1998) called it independent sets in

grid graph. Denote it simply by Shs.

• Combinatorically, it contains all matrices of size m×
n that do not have adjacent horizontal or vertical ‘1’s.
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5 Previous results

As far as we know in estimating the Shannon capacity,

there has been no one who has paid much attention to

the algebraic and combinatorial properties of the transfer

matrix for a constrained code.

For the Hard Square code, Weber seems to be the first

to consider its capacity. Weber (1988, [6]) obtained

.53602 ≤ cap(Shs) ≤ .63598,

and then Engel (1990, [2])

.58789 ≤ cap(Shs) ≤ .59756,

and then Calkin and Wilf (1998,[5]) proved that

.587891 ≤ cap(Shs) ≤ .588339.

Now they have been further improved by Nagy and Zeger

[14] to be

.587891161775 ≤ cap(Shs) ≤ .587891161868.
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6 The objective of this talk

Focuses on deriving the properties of transfer matrix of

the Hard Square system Shs. Similar properties of the

other constrained codes can be obtained using the tech-

niques and ideas.

• We derive some algebraic and combinatorial proper-

ties of the transfer matrix of the Hard Square system

Shs.
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7 Transfer matrix

Let Cm (m ≥ 0) be the set of all column(m + 1)-vectors

vi of 0
′
s and 1

′
s, such that v contains no two consecutive

1
′
s.

Let TFm+3 = (tij) where tij
def= v̂ivj is 1 if the concate-

nation vivj satisfies the constraints and is 0 otherwise.

Then TFm+3 is called the transfer matrix of the prob-

lem.

The number of m × n matrices f (m,n) that satisfy

the constriants is given by

f (m,n) = 1 t · T n
Fm+3

· 1 ,

where 1 is the vector of all1
′
s.
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8 The capacity and the transfer matrix

cap(Shs) = lim
n,m→∞

log2 f (m,n)

nm

= lim
n,m→∞

log2 1 t · T n
Fm+3

· 1
nm

= lim
m→∞ log2 λm

1/m

= lim
m→∞ log2

λm+1

λm
,

and

cap(Shs) ≥ log2

λ2m+1

λ2m
,

where λm is the largest eigenvalue of TFm+3.
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9 Characterizations of transfer matrix

We can easily find its transfer matrices.

Lemma 1. If we arrange the (m + 1)(0,1)-sequences in

lexicographcal order, then the transfer matrix is given by

TFm+3 =




TFm+2 T
(Fm+1)
Fm+2

∗ 0Fm+1


 ,

where T
(Fm+1)
Fm+2

is the first Fm+1 columns of TFm+2, i.e.,

TFm+2 = (T
(Fm+1)
Fm+2

, ·), 0Fm+1 is the Fm+1 × Fm+1 null ma-

trix, the “∗” signifies the transpose part.

The first three matrices:

TF3 =




1 1

1 0


 , TF4 =




1 1 1

1 0 1

1 1 0




, TF5 =




1 1 1 1 1

1 0 1 1 0

1 1 0 1 1

1 1 1 0 0

1 0 1 0 0




.
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10 The LtDL decomposition

Lemma 3. The transfer matrix TFm+3 has the following

LtDL decomposition:

TFm+3 = Lt
Fm+3

DFm+3LFm+3,

where

LFm+3 =




LFm+2




LFm+1

0




0 LFm+1




, LF3 =




1 1

0 1


 , LF4 =




1 1 1

0 1 0

0 0 1




,

DFm+3 =




DFm+2 0

0 −DFm+1


 , DF3 =




1 0

0 −1


 , DF4 =




1 0 0

0 −1 0

0 0 −1




.
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11 The distributions of its eigenvalues

Theorem 1. Let Pm and Nm be the numbers of positive

and negative eigenvalues of TFm+3. Then

Pm −Nm = − 2√
3
sin

mπ

3
,

where Nm = Nm−1 − Nm−2 + Fm−2 with N0 = 1 and

N1 = 2.
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12 The inverse of the matrix

Corollary 1. The inverse of TFm+3 is an (−1, 0, 1)−matrix

(the elements are −1, 0, 1) , and is given recursively by

T−1
Fm+3

=






−T−1

Fm
0

0 0







T−1
Fm

0


 T−1

Fm+1

(T−1
Fm

, 0) −T−1
Fm

0

T−1
Fm+1

0 −T−1
Fm+1




.
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13 The power of the matrix

Lemma 4. The transfer matrix TFm+3 satisfies the fol-

lowing relations: T k
Fm+3

PFm+3 = PFm+3T
k
Fm+3

, k = ±1,±2, · · ·,
where PFm+3 is a symmetric permutation matrix of size

Fm+3.

This gives T 2
Fm+3

= A2
Fm+3

, where AFm+3 = TFm+3PFm+3 =

PFm+3TFm+3.

Corollary 3. If λi and µi are the eigenvalues of transfer

matrix TFm+3 and matrix AFm+3, respectively, then we

have

|λi| = |µi| (i = 1, 2, · · · , Fm+3). So TFm+3 and AFm+3

share the same largest eigenvalue. Furthermore,

f (m,n) = 1 tT n
Fm+3

1 = 1 tAn
Fm+3

1.
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14 The general properties

Similar relations hold for other constraints. Even if the

corresponding transfer matrix, say T , is not symmetric,

then we have the per-symmetric property:

T kP = P (T t)k, k = 0, 1, 2, · · · .
where the P is a symmetric permutation matrix. Note

that the graph of P is of loops plus cycles of order 2.
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15 The order of the recursive relation that

f (m,n) satisfies

f (m,n) satisfies a recursive relation with order




(Fm+3 + Fm+3
2

)/2, if m is odd;

(Fm+3 + Fm+6
2

)/2, if m is even.

Example 3. Following are the first three recursive re-

lations for f (n,m) = 1 tTm
Fn+3

1 (for m = 1, 2, 3). Their

recurrence relations have orders 2, 4, 5, respectively.

f (n, 1) = 2f (n− 1, 1) + f (n− 2, 1);

f (n, 2) = 2f (n− 1, 2) + 6f (n− 2, 2)− f (n− 4, 2);

f (n, 3) = 4f (n− 1, 3) + 9f (n− 2, 3)− 5f (n− 3, 3)

−4f (n− 4, 3) + f (n− 5, 3).

Their initial conditions are given by f (m,n) = f (n,m) =

1 tT n
Fm+3

1 , for example, f (1, 1) = 7, f (2, 1) = 17, and so

on.
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16 The analytic expression of f (m,n)

Theorem 3. Let ϕ(λ) = det(λI − T ) be the charac-

teristic polynomial of T . Then

f (m,n) =
|λmI − T11|

ϕ′(λm)
λn+2

m +
|λj2I − T11|

ϕ′(λj2)
λn+2

j2
+ · · ·

+
|λjrmI − T11|

ϕ′(λjrm)
λn+2

jrm
,

where T11 is the bottom-right (Fm+3 − 1) × (Fm+3 − 1)

principal submatrix of T , i.e., T =




1 1 t

1 T11


 , and all

coeffients
|λjI−T11|

ϕ
′
(λj)

> 0.
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17 Numerical computations

m λm+1
λm

1 1.4920660376475357643782160628584

2 1.5041673682066925408320381142165

3 1.5029282260930080313112631785226

4 1.5030600955153464778914585820045

5 1.5030467676434921566255567236369

6 1.5030482087273507836965767785786

7 1.5030480675735632786709176203759

8 1.5030480837106775097713484237842

9 1.5030480822893138617353323026629

10 1.5030480824838507827311370714394

11 1.5030480824723636135517003809521

12 1.5030480824752323465499639032462

13 1.5030480824752615741231348797605

From the table,

cap(Shs) > log2 1.5030480824752323465499639032462

= 0.587891161775232....

We computed them using the recursive relations in Lemma

1 and the Power Method. The corresponding two matri-

ces are of sizes 377, 610, respectively.
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18 Conclusion and Conjecture

We considered some algebraic and combinatorial proper-

ties of the transfer matrix of the Hard Square system.

Some similar results can be obtained by making use of

the approaches.

We would like to pose the following Conjecture. It

seems true for the transfer matrices of the Read/Write

Isolated memory ([23], [24]) and the Hard Square sys-

tem.

Conjecture. If the transfer matrix T of a constrained

system is symmetric, and if λ is an eigenvalue of T , and λ

is not 0 or −1, then the number −1
λ is also an eigenvalue

of T .
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19 The case of Hard Square system

In the case of the Hard Square system, T is invertible.

If the conjecture is true, then we can prove easily that

1 tT−2n1

1 tT−(2n−2)1
≤ 1 tT−(2n+2)1

1 tT−2n1
≤ −λm.

where λm is the largest eigenvalue of T . This would give

a very good upper bound of its capacity.
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